SUMMARY ON ENVIRONMENTAL IMPACT ASSESSMENT REPORT

OF

B.K Infrastructure Pvt. Ltd.

[Proposed expansion by establishment of DRI Kilns (Sponge Iron - 1,67,500 TPA), Induction Furnaces (Billets / Ingots / Hot Billets - 2,00,000 TPA), Rolling Mill (TMT Bars / Structural Steel - 1,95,000 TPA), Ferro Alloy Unit of 1 x 9 MVA (FeSi- 7000 TPA / FeMn- 25,200 TPA / SiMn- 14,400 TPA / FeCr- 15,000 TPA), WHRB based Power Plant –12 MW (2 X 6 MW), Brick manufacturing unit (20,000 bricks/day) and conversion of 8 MW Biomass based power plant to Dolochar& coal based power plant in the premises of existing 8 MW Biomass based power plant)]

at

Bendridih Village, Mahasamund Tehsil & District, Chhattisgarh

Submitted to

CHHATTISGARH ENVIRONMENT CONSERVATION BOARD
Chhattisgarh

1.0 PROJECT DESCRIPTION

B.K Infrastructure Pvt. Ltd. has taken over existing 8.0 MW Biomass based power plant of M/s Kalindi Power and Steel Ltd. located at Bendridih Village, Mahasamund Tehsil & District, Chhattisgarh.

M/s Kalindi Power and Steel Ltd. has obtained CFE for the existing 8.0 MW Biomass based power plant vide order no. 869 / TS / CECB / 2005 dated 23-02-2005 and plant is having valid Consent For Operation vide order no. 5442/TS/CECB/2021 dated 27-10-2021 and it is valid upto 31-08-2024.

Now the company has proposed to establish Steel Plant, comprising of establishment of DRI Kilns (Sponge Iron - 1,67,500 TPA), Induction Furnaces (Billets / Ingots / Hot Billets - 2,00,000 TPA), Rolling Mill (TMT Bars / Structural Steel - 1,95,000 TPA), Ferro Alloy Unit of 1 x 9 MVA (FeSi- 7000 TPA / FeMn- 25,200 TPA / SiMn- 14,400 TPA / FeCr- 15,000 TPA), WHRB based Power Plant –12 MW (2 X 6 MW), Brick manufacturing unit (20,000 bricks/day) and conversion of existing 8 MW Biomass based power plant to Dolochar& coal based power plant.

Total land envisaged for the project including expansion is 16.32 Ha. (40.3 Acres). [existing land - 11.83 Ha (29.2 acres) & additional land which is already acquired - 4.49 Ha. (11.1 acres)]. The proposed expansion will be taken up mostly in the existing plant premises & remaining in the adjoining land already acquired.

Estimated Cost for the proposed expansion project is Rs. 220 Crores.

As per the Ministry of Environment, Forests & Climate Change, New Delhi notification, dated 14th September, 2006 and its subsequent amendments, all Primary metallurgical processing industries are classified under Category 'A'. The Ministry of Environment, Forests & Climate Change, New Delhi has accorded Terms of Reference (TOR) for the proposed expansion project vide letter no. IA - J-11011 / 281 / 2021 – IA II (I), dated 15th July, 2021. The EIA Report has been prepared by incorporating the TOR stipulated by the Hon'bleMoEF&CC.

Pioneer Enviro Laboratories & Consultants Private Limited, Hyderabad, which is accredited by NABET, Quality Council of India, vide certificate No. NABET/ EIA/ 1922/ RA 0149, for preparing EIA report for Metallurgical Units, have prepared Environmental Impact Assessment (EIA) report for the proposed projectby incorporating the TOR approved by

Ministry of Environment, Forest & Climate Change, New Delhi. The report contains detailed description of the following:

- Characterization of status of environment with in an area of 10 km radius from the plant for major environmental components including air, water, noise, soil, flora, fauna and socio-economic environment.
- Assessment of air emissions, liquid waste and solid waste from the proposed expansion project along with the noise level assessment.
- Environmental Management Plan comprising of emission control measures proposed to be adopted in the proposed expansion project, solid waste management, Greenbelt development, etc.
- Post Project Environmental Monitoring & Budget for Environmental Protection
 Measures.

1.1 ENVIRONMENTAL SETTING WITHIN 10 Km. RADIUS OF THE PLANT SITE

The following is the environmental setting within the 10 Km. radius of the Project site:

Table No. 1.1: Environment Setting within 10 Km. radius of the site

S.No.	Salient Features / Environmental features	Distance w.r.t. site / Remarks
1.	Type of Land	Agricultural Land (additional land acquired)
2.	Type of Land (Study Area)	As per LULC the land use within 10 Km. is as follows:
		Settlements – 3.8 %, Industrial Area – 1.4 %, Tank / River / Reservoir – 11.6%, Scrub Forest /
		Dense Forest – 20.9%, Single Crop – 14.2%,
		Double Crop – 35.3%, Crop land within forest –
		3.5%, Land with scrub – 6.8%, Land without
		scrub – 2.1%, Sheet rock area – 0.4%
3.	National Park/ Wildlife sanctuary /	Nil
	Biosphere reserve / Tiger Reserve /	
	Elephant Corridor / migratory routes for Birds	
4.	Historical places / Places of Tourist importance / Archeological sites	Nil
5.	Critically polluted area as per MoEF&CC	None
	Office Memorandum dated 13 th January	And also the Plant area does not fall in the
	2010	areas given in Hon'ble NGT order issued vide dated 10 th July 2019.
6.	Defence Installations	Nil
7.	Nearest village	Tumgaon Village (0.5 Kms. – SW Direction)
8.	No. of Villages in the Study Area	42 nos.
9.	Nearest Hospital	Tumgaon – 2.1 Kms.(SW Direction)

S.No.	Solicut Footuus / Fusingumental footuus	Distance wat site / Domestic
	Salient Features / Environmental features	Distance w.r.t. site / Remarks
10.	Nearest School	Malidih Village – 1.4 Km. (NE Direction)
11.	Forests	Tumgaon RF (0.1 Km in South), Sirpur RF (2.3
		Kms in West), Kukradih RF (4.3 kms in North),
		Sorid PF (4 Kms in South), Loharidih PF (5.5 Kms
		in South-East) are present within 10 Kms. radius
		of the plant site
12.	Water body	DhaskutNala (0.3 Kms), Kurar river (2.6 Kms.),
		Mahanadi river (8.5 Kms.), Kantori river (7.5
		Kms), Gopiyanala (6.0 Kms), Kurar reservoir (4.0
		Kms) & Few unnamed seasonal nalas, ponds
		exist within the study area
13.	Nearest Highway	NH # 6 (adjacent to Site)
14.	Nearest Railway Station	Nil within 10 Km. Radius
15.	Nearest Port facility	(Belsonda RS – 16.5 Kms.)
16.	Nearest Airport	Nil within 10 Km. Radius.
17.	Nearest Interstate Boundary	Nil within 10 Kms. Radius
18.	Seismic zone as per IS-1893	[Raipur Airport – 40.0 Kms. (Aerial)]
19.	R & R	Nil
20.	Litigation / court case is pending against	Seismic zone – II
	the proposed project / proposed site and	
	or any direction passed by the court of law	
	against the project	
	against the project	

1.2 PLANT CONFIGURATION AND PRODUCTION CAPACITY

Following is the proposed plant configuration and proposed production capacities:

Table No.1.2: Proposed Plant Configuration & Production Capacities

S.No.	Units (Products)	Existing	Proposed	After Proposed
		Operating Plant	Expansion	Expansion
1.	Biomass Power Plant	8 MW	Converted to	8 MW
			8 MW Dolochar&	
			coal based	
			power plant	
2.	DRI Kilns		1,67,500 TPA	1,67,500 TPA
	(Sponge Iron)		(2 x 250 TPD)	(2 x 250 TPD)
3.	Induction Furnaces		2,00,000 TPA	2,00,000 TPA
	(Billets / Ingots / Hot Billets)		(4 x 15 T)	(4 x 15 T)
4.	Rolling Mill through 85 % hot charging & 15% through RHF with LDO/LSHS as fuel (TMT Bars / Structural Steel)		1,95,000 TPA	1,95,000 TPA
5.	Ferro Alloys Unit		FeSi-7,000 TPA /	FeSi-7,000 TPA /
	(FeSi / FeMn / SiMn / FeCr)		FeMn-25,200 TPA /	FeMn-25,200 TPA /
			SiMn-14,400 TPA /	SiMn-14,400 TPA /
			FeCr-15,000 TPA (1 x 9 MVA)	FeCr-15,000 TPA (1 x 9 MVA)
6.	Prick manufacturing unit		20,000 bricks/day	20,000 bricks/day
0.	Brick manufacturing unit		20,000 bricks/day	20,000 bricks/day
7.	WHRB Power Plant		12 MW	12 MW
			(2 x 6 MW)	(2 x 6 MW)

1.3 RAW MATERIAL REQUIRMENT

The following will be the raw material requirement for the proposed project:

Table No.1.3: Raw Material Requirement, Source & Mode of Transport

S.No.	Raw Material	Quantity (TPA)	Sources	Distance from site (in Kms.	Mode of Transport		
1.	For DRI Kilns (Sponge Iron) – 1,67,500 TPA						
					Through covered		
					conveyers		
2)	a) Pellets (100 %) 2,51,	2 51 250	purchased from		&		
a)		2,51,230	outside		By road		
					(through covered		
					trucks)		
			Or		_		
			Barbil, Orissa	~ 500 Kms.	By rail & road		
b)	Iron ore (100%)	2,68,000	NMDC,		(through covered		
	, ,	, ,	Chhattisgarh		trucks)		

		•				
		Indian		SECL	~ 500 Kms.	By rail & road
			2,17,750	Chhattisgarh /		(through covered
		(or)	_,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	MCL Odisha		trucks)
۵۱	Coal	(01)		IVICE Odisila	~ C00 Vms	,
c)				Indonesia /	~ 600 Kms.	Through sea route,
		Imported	1,39,360	South Africa /	(from Vizag	rail route & by road
		Imported	1,33,300	Australia	Port)	(through covered
				Australia		trucks)
		•				By road
d)	Dolomite		8,375	Chhattisgarh	~ 100 Kms.	(through covered
u,	Dolomic		0,373	Ciliattisgaili	100 KIII3.	=
	5 0: 15	4 l.: 01 /	D:11 . / 1 / 1			trucks)
2.	For Steel N	vieiting Snop (i	Billets/ ingots/F	lot Billets) – 2,00,00	IV IPA	T
a)				Own generation		Through covered
	Sponge Iro	n	2,02,000	& purchased	~ 100 Kms.	_
				from outside		conveyers
b)						By road
",	MS Scrap /	Dig Iron	60,000	Chhattisgarh	~ 100 Kms.	(through covered
	ivis scrap /	rig II UII	00,000	Ciliattisgaill	TOO VIIIS.	, -
						trucks)
c)						By road
	Ferro alloy	'S	3,000	Own generation		(through covered
						trucks)
3.	For Rolling	Mill through	Hot charging (Re	olled Products) – 1,9	95.000 TPA	,
			2,10,000	Own generation	70,000 1171	
a)	Hot Billets / Billets /		2,10,000	Own generation		
	Ingots					
b)	LDO / LSHS	5	6435	Nearby IOCL	~ 100 Kms.	By road
			Kl/annum	Depot	100 KIII3.	(through Tankers)
4.	Power plai	nt- 8 MW (con	version from bi	omass to Dolochar8	k coal based)	
a)	Dolochar	•	50,250	Own generation		In covered trucks
b)	Coal (India	n)	22,395	SECL	~ 500 Kms.	By rail & road
D)	Coar (illuia	aii <i>)</i>	22,393		JOU KIIIS.	<u> </u>
				Chhattisgarh /		(through covered
	(or)			MCL Odisha		trucks)
	Coal (Impo	rted)	14,333	Indonesia /	~ 600 Kms.	Through sea route,
				•	(from Vizag	rail route & by road
				South Africa /	Port)	(through covered
				Australia	 	trucks)
5.	For Forro /	Alloys (1 x 9 M	\/^)		<u> </u>	i della
	1		•			
5 (i)		ilicon – 7,000	I <i>PA</i>			
a)	Quartz			Chhattisgarh /	~ 500 Kms.	By road
			12,150	Andhra Pradesh		(through covered
						trucks)
b)	LAM coke			Andhra Pradesh	~ 500 Kms.	By road
			9,450		200 111101	(through covered
			3,430			
<u> </u>		/ ·				trucks)
c)	MS Scrap /	Mill scales		Inhouse		By road
			2100	Generation		(through covered
						trucks)
d)	Electrode p	paste		Maharashtra /	~ 300 Kms.	By road
",	-:		180	West Bengal	300 11113.	(through covered
				Avest pelikai		(till ough covered

					trucks)
e)	Bagfilter dust	100	Own generation		
5 (ii)	For Ferro Manganese – 2	5,200 TPA			
a)	Manganese Ore	34,200	MOIL / OMC	~ 500 Kms.	By Rail & Road (through covered trucks)
b)	LAM coke	9,900	Andhra Pradesh	~ 500 Kms.	By road (through covered trucks)
c)	Dolomite	4050	Chhattisgarh / Andhra Pradesh	~ 500 Kms.	By road (through covered trucks)
d)	MS Scrap / Mill scales	3600	Inhouse Generation		By road (through covered trucks)
e)	Electrode Paste	315	Maharashtra / West Bengal	~ 300 Kms.	By road (through covered trucks)
f)	Bagfilter dust	500	Own generation		
5 (iii)	For Silico Manganese –14	4,400TPA			
a)	Manganese Ore	24,300	MOIL / OMC	~ 500 Kms.	By Rail & Road (through covered trucks)
b)	LAM Coke	8,100	Andhra Pradesh	~ 500 Kms.	By road (through covered trucks)
c)	FeMn. Slag	15,150	In house generation		
d)	Dolomite	3,700	Chhattisgarh / Andhra Pradesh	~ 500 Kms.	By road (through covered trucks)
e)	Electrode paste	315	Maharashtra / West Bengal	~ 300 Kms.	By road (through covered trucks)
f)	Quartz	3,900	Chhattisgarh / Andhra Pradesh	~ 500 Kms.	By road (through covered trucks)
g)	Bagfilter dust	100	Own generation		
5 (iv)	For Ferro Chrome – 15,00	00 TPA			
a)	Chrome Ore	28,350	Sukinda, Odisha Import, South Africa	~ 500 Kms. ~ 600 Kms. (from Vizag Port)	By road (through covered trucks) From Port By Road (through covered Trucks)
b)	LAM Coke	9900	Andhra Pradesh	~ 500 Kms.	By road (through covered

					trucks)
					,
			Chhattisgarh /	~ 500 Kms.	By road
c)	Quartz	450	Andhra Pradesh		(through covered
			Andhra Pradesh		trucks)
			Inhausa		By road
d)	MS Scrap / Mill Scale	1350	1350 Inhouse		(through covered
			Generation		trucks)
			Clala attiaca ula /	~ 500 Kms.	By road
e)	Magnetite / Bauxite	2700	Chhattisgarh /		(through covered
,			Maharashtra		trucks)
				~ 300 Kms.	By road
f)	Electrode Paste	270	Maharashtra /		(through covered
',	., =::::::::::::::::::::::::::::::::::::		West Bengal		trucks)
۵۱	Doofilton dust	600	Our conoration		e. deltaj
g)	Bagfilter dust	600	Own generation		

1.4 MANUFACTURING PROCESS

1.4.1 Sponge Iron (DRI)

The proposal consists of 2 x 250 TPD of DRI kilns to produce 1,67,500TPA of Sponge Iron with 2 x 6 MW WHRB facility. Refractory lined rotary kilns will be used for reduction of iron ore in solid state.

Refractory lined rotary kilns will be used for reduction of iron ore in solid state. A central Burner located at the discharge end will be used for initial heating of the kiln.

Iron ore Pellets/Iron ore will be continuously fed into the kiln along with coal which has dual role of fuel as well as reductant. Dolomite will be added to scavenge the sulphur from the coal. A number of air tubes will be provided along the length of the kiln. The desired temperature profile will be maintained by controlling the volume of the combustion air through these tubes. The Carbon monoxide generated due to the combustion of coal, reduces the iron ore and converts it into sponge iron. The rotary kiln is primarily divided into two zones viz. the pre heating zone and the reduction zone. The preheating zone extends over 30 to 50 % of the length of the kiln and in this the moisture in the charge will be driven off and the volatile matter in the coal will be burnt with the combustion air supplied through the air tubes. Heat from the combustion raises the temperature of the lining and the bed surface. As the kiln rotates, the lining transfers the heat to the charge. Charge material, pre-heated to about 1000°C enters the reduction zone. Temperature of the order of 1050°C will be maintained in the reduction zone, which is the appropriate temperature for solid state reduction of iron oxide to metallic iron.

This hot material will be transferred to Heat exchanger. In Heat exchanger the material will be cooled to 160°C. The cooler discharge material consists of sponge iron lumps, sponge iron fines and char. Magnetic and non-magnetic material will be separated through magnetic separators and stored in separate bins. The hot flue gases will be taken to a Waste Heat Recovery Boilers and after heat recovery they will be treated in high efficiency ESP and discharged into the atmosphere through stack whose height will be in accordance with CPCB norms.

1.4.3 Steel Melting Shop

In Steel Melting Shop (SMS), Sponge Iron will be melted along with melting scrap and fluxes to make pure liquid steel and then to mould it in required size billets. The SMS will consist ofInduction furnaces, Ladles, Cranes & Continuous Casting Machine (CCM). There will be 4 x 15 T Induction furnaces to manufacture Hot Billets/ Billets of 2,00,000 TPA. Either the Hot Billets produced from LRF will be directly sent to Rolling Mill without using Re-heating Furnace through Hot charging method (or) Billets / Ingots will be sent to Re-heating Furnace to reheat the Billets and then sent to Rolling Mill to manufacture Rolled Products. The flue gases will be treated in fume extraction system with bagfilters.

1.4.4 Rolling Mill

The Hot Billets produced from Induction Furnaces will be directly sent to Rolling Mill to produce Rolled Products (OR) Hot Billetswill be cooled and stored will be sent to reheating furnaces for the heating and will be sent to Rolling Mill. Furnace will be heated with LDO / LSHS. The proposed Rolling mill will produce 1,95,000 TPA of TMT Bars / Structural Steels.

1.4.5 Submerged Electric Arc Furnaces

1 no. of Submerged Electric Arc Furnace of 9 MVA will be setup in the proposed plant. Ferro manganese, silicon-manganese will be produced using manganese ore as main raw material, Ferro silicon will be produced using Quartz as main raw material & Ferro Chrome will be produced using Chrome Ore as main raw material in sub-merged arc furnaces using reducer (Coke) under high voltage. Flue gases will be extracted through 4th hole and then treated in bagfilters.

1.4.6 Power Generation

Through WHRB Boiler

The hot flue gases from proposed 2 x 250 TPD DRI kilns will pass through waste heat recovery Boiler to recover the heat and to generate 12 MW (2 x 6 MW) electricity. The gases after heat recovery will pass through ESP and then discharged through chimneys into the atmosphere for effective dispersion of emissions into the atmospherethrough stacks of adequate height.

Through AFBC Boiler

Coal (Imported / Indian) along withdolochar will be used as fuel in existing AFBC Boiler to generate 8 MW of electricity. The flue-gases will be treated in high efficiency ESP and then discharged through a stack of adequate height into the atmosphere.

1.5 Water Requirement

- Water required for the proposed expansion project will be 780 KLD. This includes make up water for DRI Kilns, Induction Furnaces, Rolling Mill, Ferro Alloys Unit, & Domestic.
- Water required for proposed project will be sourced from Kurar River (which is at a distance of 2.5 Kms. from the project site).
- Application has been submitted to Water drawl permission from Water Resource
 Department, Chhattisgarh and same is under process.
- Water for the existing power plant is 576 KLD.
- Total water requirement including existing plant (power plant) will be 1,356 KLD.

Table No.1.4: Water Requirement Breakup

S No.	Unit	Quantity in KLD				
S.No.		Existing	Expansion	Total		
1.	DRI Kilns		170	170		
2.	Induction Furnaces		140	140		
3.	Rolling Mill		180	180		
4.	Ferro Alloys		30	30		
5.	Power plant	576	240	816		
6.	Brick manufacturing unit		10	10		
7.	Domestic	10		10		
	Total	576	780	1356		

1.6 Wastewater Generation

- Total wastewater generation will be 338 KLD.
- There will be no effluent discharge in the Sponge Iron, Induction Furnaces, Ferro Alloys unit as closed-circuit cooling system will be adopted.
- Effluent from Rolling Mill will be sent to settling tank & will be recycled through closed circuit cooling system.
- Effluent from power plant will be treated in ETP and after ensuring compliance with SPCB norms, it will be utilized for dust suppression, ash conditioning and for greenbelt development.
- Sanitary wastewater will be treated in STP.
- Garland drains will be provided around all the raw material stacking areas.

Table No.1.5: BreakupofWastewater Generation

S.No.	Source	Quantity in KLD			
3.NO.	3.NO. Source		Expansion	Total	
1.	Power Plant				
	a) Cooling Tower blowdown	192 29		221	
	b) Boilers blowdown	21	24	45	
	c) D.M. plant regeneration water	26	38	64	
2.	Sanitary Wastewater	8 8		8	
	Total	239	99	338	

1.7 Wastewater Characteristics

The following are the Characteristics of wastewater.

Table No.1.6: Characteristics of Effluent

PARAMETER	CONCENTRATION					
	Cooling Tower	DM Plant	Boiler	Sanitary		
	blowdown	Regeneration	Blowdown	wastewater		
рН	7.0 – 8.0	5.0 – 10.0	9.5 – 10.5	7.0 – 8.5		
BOD (mg/l)				200 – 250		
COD (mg/l)				300 – 400		
TDS (mg/l)	1000	5000 – 6000	1000 mg/l	800 – 900		
Oil & Grease (mg/l)		10		5 - 10		
TSS (mg/l)				150-200		

2.0 DESCRIPTION OF ENVIRONMENT

Base line data has been collected on ambient air quality, water quality, noise levels, flora and fauna and socio-economic details of people within 10 km radius of the plant.

2.1 Ambient air quality

Ambient air quality was monitored for PM_{2.5}, PM₁₀, SO₂, NOx & CO at 8 stations including project site during **1**st **March 2021 to 31**st **May 2021**. The following are the concentrations of various parameters at the monitoring stations:

TableNo.2.1: Ambient Air Quality Summary

S.No.	Parameter		Concentration			
1.	PM _{2.5}	••	20.1 to 30.9μg/m ³			
2.	PM ₁₀		33.4 to 51.5 μg/m ³			
3.	SO ₂	:	6.9 to 11.5μg/m ³			
4.	NO _X	:	7.2 to 14.6 μg/m ³			
5.	СО		375 to 865 μg/m ³			

2.2 Water Quality

2.2.1 Surface Water Quality

Kurar river (2.5Kms. – S), Kurar Water Reservoir (4.0 Kms. – SE), Mahanadi River (8.5 Kms. – NW) are present within 10 Km. radius of the project site. 2 no. of samples i.e. 60m Upstream & 60 m Downstream from Kurar River & Mahanadi River each and one sample from Kurar Water Reservoir have been collected and analyzed for various parameters. The analysis of samples shows that all the parameters are in accordance with BIS-2296 specifications.

2.2.2 Ground Water Quality

8 Nos. of ground water samples from open wells / bore wells have been collected from the nearby villages to assess ground water quality impacts and analyzed for various Physico-Chemical parameters. The analysis of samples shows that all the parameters are in accordance with BIS: 10500 specifications.

2.3 **Noise Levels**

(Proposed expansion)

Noise levels were measured at 8 locations during daytime&Nighttime. The noise levels at the monitoring stations are ranging from 45.9 dBA to 55.6 dBA.

3.0 ANTICIPATED ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

3.1 Prediction of impacts on air quality

The likely emissions from the proposed expansion project are PM₁₀, SO₂, NOx & CO. The predictions of Ground level concentrations have been carried out using Industrial Source Complex (ISC-3) model. Meteorological data such as wind direction, wind speed, max. and min. temperatures collected at the site have been used as input data to run the model.

Adjacent to the proposed expansion project site, M/s Karnikripa Power Private Limitedhas proposed to establish a Mini steel plant and it is in the process of obtaining of Environmental clearance. Hence GLC's were calculated considering the emissions due to project and vehicular emissions of proposed project of M/s Karnikripa Power Private Limited.

The predicted max. Incremental PM₁₀concentrations (24 hourly) due to the emissions from operation of proposed expansion project & M/s KPPL will be 1.1µg/m³ at a distance of 1300 m from the stack in the down wind direction over the baseline concentrations.

The predicted incremental rise in Particulate Matter concentration due to the Vehicular emissionsduring operation of proposed expansion project & M/s KPPL will be 1.3µg/m³.

Hence the total predicted incremental rise inParticulate Matter concentrationwill be $1.1 \mu g/m^3 + 1.3 \mu g/m^3 = 2.4 \mu g/m^3$.

The predicted max incremental SO₂ concentrations (24 hourly) emissions from operation of proposed expansion project & M/s KPPL will be 11.6µg/m³ at a distance of 1300 m from the stack in the down wind direction over the baseline concentrations.

The predicted max incremental NOx concentrations (24 hourly) due to the emissions from operation of proposed expansion project & M/s KPPL will be 6.8µg/m³ at a distance of 1300 m from the stack in the down wind direction over the baseline concentrations.

The predicted incremental rise in NOxconcentration due to the Vehicular emissions during operation of proposed expansion project & M/s KPPL will be 7.4µg/m³.

Hence the total predicted incremental rise in NOx concentration will be 6.8µg/m³ + $7.4 \mu g/m^3 = 14.2 \mu g/m^3$

(Proposed expansion)

The predicted incremental rise in CO concentration due to the Vehicular emissions during operation of proposed expansion project & M/s KPPL will be 4.8µg/m³.

Table No.3.1: NET RESULTANT MAXIMUM CONCENTRATIONS DURING THE OPERATION OF THE PROPOSEDPROJECT

Item	PM ₁₀ (μg/m ³)	SO ₂ (μg/m³)	NO _χ (μg/m³)	CO (μg/m³)
Maximum baseline conc. in the study area	51.5	11.5	14.6	865
Maximum predicted incremental rise in concentration due to emissions from operation of proposed expansion project & M/s KPPL (Point Sources)	1.1	11.6	6.8	
Maximum predicted incremental rise in concentration due to proposed expansion project & M/s KPPL(Vehicular emissions)	1.3	ŀ	7.4	4.8
Net resultant concentrations during operation of the proposed project	53.9	23.1	28.8	869.8
National Ambient Air Quality Standards	100	80	80	2000

The net resultant Ground level concentrations during operation of the proposed project are within the NAAQS. Hence, there will not be any adverse impact on air environment due to the proposed project.

3.2 Prediction of impacts on Noise quality

The major sources of noise generation in the proposed expansion project will be STG, boilers, compressors, DG set, etc. Acoustic enclosures will be provided to the STG. The ambient noise levels will be within the standards prescribed by MoEF vide notification dated 14-02-2000 under the Noise Pollution (Regulation & Control), Rules 2000 i.e. the noise levels will be less than 75 dBA during day time and less than 70 dBA during night time. 5.5 Ha. (13.6 Acres)ofextensive greenbelt will be developed to further attenuate the noise levels. Hence there will not be any adverse impact due to noise on population in surrounding areas due to the proposed expansion project.

3.3 Prediction of impacts on Water Environment

Closed loop cooling water system will be adopted in Pellet Plant, DRI, SMS, and Ferro Alloy units. Effluent from Rolling mill will be treated in oil separator followed by settling tank & will be recycled back. Effluent from power plant will be treated in Effluent Treatment Plant

and after ensuring compliance with SPCB norms, it will be utilized for dust suppression, ash conditioning and for greenbelt development. Sanitary wastewater will be treated in Sewage Treatment Plant. Treated sewage will be used for Greenbelt development. There will not be any effluent discharge outside the premises. ZLD will be followed. Hence there will not be any adverse impact on environment due to the proposed expansion project.

3.4 Prediction of Impacts on Land Environment

The effluent will be treated to achieve SPCB standards. Zero effluent discharge will be adopted. All the required air pollution control systems will be provided to comply with CPCB / SPCB norms. All solid wastes will be disposed / utilized as per CPCB / SPCB norms. 5.5 Ha. (13.6 Acres)of extensive greenbelt will be developed as per guidelines. Hence, there will not be any adverse impact on land environment due to the proposed expansion project.

3.5 Socio - Economic Environment

There will be certain upliftment in Socio Economic status of the people in the area & development of the area due to the proposed expansion project. Developmental activities will be taken up in consultation with village panchayat. Due to this the economic conditions, the educational and medical standards of the people living in the study area will certainly move upwards which will result in overall economic development, improvement in general aesthetic environment and increase in business opportunities.

4.0 ENVIRONMENTAL MONITORING PROGRAMME

Post project monitoring will be conducted as per the guidelines of SPCB and MoEF&CC are tabulated below:

TABLE NO.4.1: MONITORING SCHEDULE FOR ENVIRONMENTAL PARAMETERS

S.No.	Particulars	Frequency of	Duration of	Parameters required
		Monitoring	sampling	to be monitored
1. Wate	er &Waste water qualit	У		
A.	Water quality in the	Once in a month except	Grab sample	As per IS: 10500
	area	for heavy metals which		
		will be monitored on		
		quarterly basis.		
В.	Effluent at the outlet	Twice in a month	compositesample	As per EPA Rules, 1996
	of the ETP		(24 hourly)	
C.	STP Inlet & Outlet	Twice in a month	Composite sample	As per EPA Rules1996
			(24 hourly)	
2. Air Quality				

S.No.	Particulars	Frequency of Monitoring	Duration of sampling	Parameters required to be monitored
A.	Stack Monitoring	Online monitors (all stacks) Once in a month		PM PM,SO ₂ & NOx
В.	Ambient Air quality (CAAQMS)	Continuous	Continuous	PM _{2.5} , PM ₁₀ , SO ₂ ,NOx & CO
C.	Fugitive emissions	Monthly Once	8 hours	PM
3. Met	eorological Data			
	Meteorological data to be monitored at the plant.	Daily	Continuous monitoring	Temperature, Relative Humidity, rainfall, wind direction & wind speed.
4. Nois	e level monitoring			
	Ambient Noise levels	Monthly once	Continuous for 24 hours with 1 hour interval	Noise levels

5.0 ADDITIONAL STUDIES

No Rehabilitation and Resettlement is involved in the expansion proposed project as there are no habitations in the project site. Hence no R & R study has been carried out.

6.0 PROJECT BENEFITS

With the establishment of the proposed expansion project employment potential will increase. Land prices in the area will increase. The economic status of the people in the area will improve due to the proposed project. Periodic medical checkups will be carried out. Top priority will be given to locals in employment.

7.0 ENVIRONMENT MANAGEMENT PLAN

7.1 Air Environment

The following are air emission control systems proposed in the proposed expansion project:

Table No.7.1: Air Emission Control Systems Proposed

S.No.	Source	Control Equipment	Emission at the
			outlet
1.	DRI kilns with WHRB's	Electro Static Precipitators (ESP)	PM< 30 mg/Nm ³
2.	Induction Furnaces with CCM	Fume Extraction system with	PM< 30 mg/Nm ³
		PTFE bag filters	
3.	Submerged Electric Arc Furnace	4 th Hole Fume Extraction system	PM< 30 mg/Nm ³
		with bag filters	
4.	Re-heating furnaces attached to		PM< 30 mg/Nm ³

Source	Control Equipment	Emission at the outlet
Rolling Mill		
FBC Boiler	Electro Static Precipitator	PM< 30 mg/Nm ³
	Automated Lime dosing	SOx< 100 mg/Nm
	Low NOx burners with 3-stage combustion, flue gas recirculation and auto combustion control	NOx < 100 mg/Nm
	Rolling Mill	Rolling Mill FBC Boiler Electro Static Precipitator Automated Lime dosing Low NOx burners with 3-stage combustion, flue gas recirculation

Note: Apart from the above Fume extraction system with bagfilters, dust suppression system, mechanical dust sweepers, covered conveyers etc. will also be installed

Apart from the above the following air emission control systems/ measures are proposed in the Plant:

- All conveyors will be completely covered with G.I. sheets to control fugitive dust.
- All bins will be totally packed and covered so that there will not be any chance for dust leakage.
- All the dust prone points material handling systems will be connected with de-dusting system with bag filters.
- All discharge points and feed points, wherever the possibility of dust generation is there a de-dusting suction point will be provided to collect the dust.

7.2 Water Environment

- Total wastewater generation will be 338 KLD.
- There will be no effluent discharge in the Sponge Iron, Induction Furnaces, Ferro Alloys
 unit as closed-circuit cooling system will be adopted.
- Air Cooled condensers will be provided in the power plant, which will be reduce the water consumption significantly. Hence wastewater generation will also be minimized.
- Effluent from Rolling Mill will be sent to settling tank & will be recycled through closed circuit cooling system.
- Effluent from power plant will be treated in ETP and after ensuring compliance with SPCB norms, it will be utilized for dust suppression, ash conditioning and for greenbelt development.
- Sanitary wastewater will be treated in STP.
- Garland drains will be provided around all the raw material stacking areas.

(Proposed expansion)

EFFLUENT TREATMENT PLANT

pH of the boiler blowdown will be between 9.5 to 10.5. Hence a neutralization tank will be constructed for neutralizing the boiler blow down. DM plant regeneration water will be neutralized in a neutralization tank. After neutralization, these two effluent streams will be mixed with Cooling Tower blowdown in a Central Monitoring Basin (CMB). Service water will be treated in an oil separator and after treatment it will be taken to CMB. The treated effluent will be utilized for dust suppression, ash conditioning and for Green belt development. No effluent will be let out of the plant premises. Hence Zero discharge concept will be implemented.

The following will be treated combined effluent characteristics.

•	рН	_	6.5 - 8.5
•	TSS	-	< 100 mg/l
•	Oil & Grease	-	< 10 mg/l
•	Free available chlorine	-	< 1.0 mg/l
•	Copper	-	<1.0 mg/l
•	Iron	-	< 1.0 mg/l
•	Zinc	-	< 1.0 mg/l
•	Chromium	-	< 0.2 mg/l
•	Phosphates	-	< 5.0 mg/l

Treated Sewage Characteristics

S.No.	Parameters	Parameters limit
1.	рН	6.5 – 8.0
2.	BOD (mg/L)	Not more than 10
3.	COD (mg/L)	Not more than 50
4.	TSS (mg/L)	Not more than 20
5.	NH ₄ -N (mg/L)	Not more than 5
6.	N-Total (mg/L)	Not more than 10
7.	Fecal Coliform (MPN/100 ml)	Less than 100

TREATED EFFLUENT DISPOSAL

Effluent quantity to be used for ash conditioning : 100 m³/day

Effluent to be used for dust suppression in CHP : 100 m³/day

Effluent to be used for Greenbelt development : 138 m³/day

(Proposed expansion)

13.6 Acres of greenbelt will be developed within the plant premises by using the treated effluent. A dedicated pipe distribution network will be provided for using the treated effluent for greenbelt development.

7.3 Noise Environment

The major sources of noise generation in the proposed project will be STG, boilers, compressors, DG set, etc. Acoustic enclosure will be provided to STG & DG sets. All the machinery will be manufactured in accordance with MoEF&CC norms on Noise levels. The employees working near the noise generating sources will be provided with earplugs. The extensive greenbelt development proposed within the plant premises will help in attenuating the noise levels further. Noise barriers in the form of trees are recommended to be grown around administrative block and other utility units.

7.4 Land Environment

The wastewater generated from the proposed project will be treated in the Effluent Treatment Plant to comply with the SPCB standards and will be used for dust suppression, ash conditioning and for greenbelt development. All the required Air emission control systems will be installed and operated to comply with SPCB norms. Solid wastes will be disposed off as per norms. Extensive greenbelt will be developed in the plant premises. Desirable beautification and landscaping practices will be followed. Hence there will not be any impact due to the proposed project.

Table No.7.2: Solid Waste Generation and Disposal

S.No.	Waste / By product	Quantity (TPA)	Proposed method of disposal
1.	Ash from DRI	30,150	Will be utilised in the proposed Brick Manufacturing Unit
2.	Dolochar	50,250	Will be used in FBC power plant as fuel.
3.	Kiln Accretion Slag	1,508	Will be used in road construction &utilised in the proposed brick manufacturing unit
4.	Wet scrapper sludge	7,705	Will be used in road construction &utilised in the proposed brick manufacturing unit
5.	SMS Slag	20,000	Slag from SMS will be crushed and iron will be recovered & then remaining non -magnetic material being inert by nature will be used as sub base material in road construction/ used in brick manufacturing.

S.No.	Waste / By product	Quantity (TPA)	Proposed method of disposal
6.	Mill scales from Rolling Mill	3,960	Mill scales will be utilized in proposed Ferro alloys manufacturing unit.
7.	End cuttings from Roling Mill	5,940	End cuttings will be reused in SMS.
8.	Slag from FeMn	15,150	Will be reused in manufacture of SiMn as it contains high SiO_2 and $Silicon$.
9.	Slag from FeSi	500	Will be given to Cast iron foundries
10.	Slag from SiMn	15,500	will be used for Road construction / will be given toslag cement manufacturing
11.	Slag from FeCr	13,960	Will be processed in Zigging plant for Chrome recovery. After Chrome recovery, the left-over slag will be analysed for Chrome content through TCLP test, if the Chrome content in the slag is within the permissible limits, then it will be utilised for Road laying /brick manufacturing. If Chrome content exceeds the permissible limits, it will be sent to nearest TSDF.

7.5 Greenbelt Development

Greenbelt of 5.5 Ha. (13.6 Acres)of extensive greenbelt will be developed in the plant premises. Width of proposed greenbelt ranges from 15 to 20 m.

7.6 Cost for Environment Protection

Capital Cost for Environment Protection for proposed plant : Rs. 36.6Crores

Recurring Cost per annum for Environmental protection : Rs.1.21Crores

