SUMMARY ON

ENVIRONMENTAL IMPACT ASSESSMENT REPORT

OF

Sky Steel and Power Private Limited

(Proposed Steel Plant)

at

Kesda(V), Simga (T), Baloda bazar(D), Chhattisgarh

Submitted to

CHHATTISGARH ENVIRONMENT CONSERVATION BOARD

1.0 PROJECT DESCRIPTION

Sky Steel & Power Power Pvt. Ltd. has proposed to establish Steel Plant, a Greenfield Project, comprising of establishment of Iron ore beneficiation plant (Beneficiated iron ore – 1.3 MTPA), Pellet plant (Pellets - 1.0 MTPA), DRI Kilns (Sponge iron - 3,30,000 TPA), Induction Furnace with LRF & CCM (Hot Billets / MS Billets / Ingots - 2,64,000 TPA), Rolling Mill (Rolled products - 2,97,000 TPA), Submerged Electric Arc Furnaces (FeSi – 17,955 TPA / FeMn- 45,144 TPA / SiMn-23,940 TPA / FeCr-26,600 TPA), WHRB based Power Plant – 22 MW, CFBC based Power Plant - 16 MW & Brick Manufacturing unit (56,000 Bricks/day) at Khasra nos. 219, 220/1, 220/2, 221, 222/1, 222/2, 223, 225, 296, 297, 298/1, 298/2, 299, 300, 305/1, 305/2, 306, 307, 308, 316, 317, 318, 319, 322/2, 326/2, 328/2, 334, 335, 346, 347, 1713, 1718, 1719, 1720, 1721, 1722, 1725, 1726, 1727, 1728, 1748, 1749, 268/1760 at Kesda Village, Simga Tehsil, Balodabazar District, Chhattisgarh Total land envisaged for the proposed project is 24.88 Ha. (61.48 Acres). Agreements have

been entered with landowners for entire land.

The project cost envisaged for the proposed project is Rs. 494 Crores.

As per the Ministry of Environment, Forests & Climate Change, New Delhi notification, dated 14th September, 2006 and its subsequent amendments, all Primary metallurgical processing industries are classified under Category 'A'. The Ministry of Environment, Forests & Climate Change, New Delhi has accorded Terms of Reference (TOR) for the proposed project vide letter no. J-11011 / 339 / 2021 – IA II (IND-I), dated 23rd September 2021. The EIA Report has been prepared by incorporating the TOR stipulated by the MoEF&CC.

Pioneer Enviro Laboratories & Consultants Private Limited, Hyderabad, which is accredited by NABET, Quality Council of India, vide certificate No. NABET/ EIA/ 1922/ SA 0148, valid up to 21st September 2022 for preparing EIA report for Metallurgical Unit, have prepared Environmental Impact Assessment (EIA) report for the proposed project by incorporating the TOR approved by Ministry of Environment, Forests & Climate Change, New Delhi. The report contains detailed description of the following:

- Characterization of status of environment with in an area of 10 km radius from the plant for major environmental components including air, water, noise, soil, flora, fauna and socio-economic environment.
- Assessment of air emissions, liquid waste and solid waste from the proposed project along with the noise level assessment.
- Environmental Management Plan comprising of emission control measures proposed to be adopted in the proposed project, solid waste management, Greenbelt development.
- Post Project Environmental Monitoring & Budget for Environmental Protection Measures.

1.1 ENVIRONMENTAL SETTING WITHIN 10 Km. RADIUS OF THE PLANT SITE

The following is the environmental setting within the 10 Km. radius of the Project site:

S.No.	Salient Features / Environmental features	Distance w.r.t. site / Remarks
1.	Type of Land	Agricultural Land
2.	Type of Land (Study Area)	As per LULC the land use within 10 Km. is as
		follows:
		Settlements – 4.7 %, Industrial Area – 2.3 %,
		Tank / River / Major Canal etc. – 5.8%, Scrub
		Forest – 4.9%, Single Crop – 62.5%, Double Crop
		- 7.6%, Plantation - 1.6 %, Land with scrub -
		6.1%, Land without scrub – 4.5%.
3.	National Park/ Wildlife sanctuary /	Nil
	Biosphere reserve / Tiger Reserve /	
	Elephant Corridor / migratory routes for	
	Birds	
4.	Historical places / Places of Tourist	Nil
	importance / Archeological sites	
5.	Critically polluted area as per MoEF&CC	None
	Office Memorandum dated 13 th January	And also the Plant area does not fall in the
	2010	areas given in Hon'ble NGT order issued vide
		dated 10 th July 2019.
6.	Defence Installations	Nil
7.	Nearest village	Kesda Village at 1.25 Kms.
8.	No. of Villages in the Study Area	55 no.s
9.	Nearest School	Kesda School at 1.8 Kms.
10.	Forests	BilariGhughua RF - 0.35 kms. (W)
		Bilari RF – 6.2 Kms (SSW)are present within 10
		Km. radius of the project site
11.	Water body	Seasonal Nala is Passing through the site to the

S.No.	Salient Features / Environmental features	Distance w.r.t. site / Remarks
		West to Eastern direction.
		Mahanadhibhatapara Canal - 0.15 km (SE)
		Shivnath River – 9.5 Kms (W)
		JamuniyaNadhi – 5.1 Kms. (SE)
		Otgan Pond – 3.3 Kms (SW)
		Hatbandh Pond – 3.8 Kms.(E)
		Khilora Pond – 7.6 Kms (NEE)
		Parsada Pond – 7.4 Kms. (SSW) are present
		within 10 Km. radius of the project site
12.	Nearest Highway	NH # 130 – 6.5 Kms. (NWW)
13.	Nearest Railway Station	Hathband R.S. – 5.1 Kms.
14.	Nearest Port facility	Nil within 10 Km. Radius.
15.	Nearest Airport	Nil within 10 Kms. Radius
		[Raipur Airport – 72.0 Kms. (by road)]
16.	Nearest Interstate Boundary	Nil
17.	Seismic zone as per IS-1893	Seismic zone – II
18.	R & R	There is no rehabilitation and resettlement
		issue, as there are no habitations present in the
		site area.
19.	Litigation / court case is pending against	Nil
	the proposed project / proposed site and	
	or any direction passed by the court of law	
	against the project	

1.2 PLANT CONFIGURATION AND PRODUCTION CAPACITY

Following is the proposed plant configuration and proposed production capacities

TABLE NO. 11.1.1: PROPOSED PLANT CONFIGURATION & PRODUCTION CAPACITIES

S.No.	Units (Products)	Plant Configuration	Production Capacity
1.	Iron ore Beneficiation	1 x 1.3 MTPA	1.3 MTPA (throughput)
	(Beneficiated ore)		
2.	Pellet Plant (Pellet)	1 x 1.0 MTPA	1.0 MTPA
3.	DRI Kilns (Sponge Iron)	2 x 350 TPD	3,30,000 TPA
		3 x 100 TPD	
4.	Induction Furnace	4 x 20 T	2,64,000 TPA
	(Billets / Ingots / Hot Billets)		
5.	Rolling Mill	3 x 300 TPD	2,97,000 TPA
	(Rolled products)		
	(85 % Hot charging with Hot Billets		
	and remaining 15% through RHF		
	with LDO/LSHS as fuel)		
6.	Ferro Alloys Unit	3 x 6 MVA	FeSi – 17,955 TPA / FeMn-
	(FeSi / FeMn / SiMn / FeCr)		45,144 TPA / SiMn-23,940
			TPA / FeCr-26,600 TPA

Executive Summary

Sky Steel and Power Private Limited	Summary on Environmental Impact Assessment Report	
Proposed Steel Plant	Kesda(V), Simga (T), Baloda bazar(D), Chhattisgarh	

7.	Brick Manufacturing Unit		56000 Brick/ day	56000 Brick/ day		
8.	Power Plant (38 MW)	WHRB Power Plant	2 x 8 MW 3 x 2 MW	22 MW		
		CFBC Power Plant	1 x 16 MW	16 MW		
Note :	Note : For better utilization of slag from Ferro alloy unit we will install 200 Kg/hour Briquetting unit					

1.3 RAW MATERIAL REQUIRMENT

The following will be the raw material requirement for the proposed project:

TABLE NO. 11.1.2: RAW MATERIAL REQUIREMENT, SOURCE & MODE OF TRANSPORT

S.No.	Raw Ma	terial	Quantity (TPA)	Sources	Distance from site (in Kms.	Mode of Transport
1.	For Iron	Ore Beneficiat	tion Plant (13	3, 00,000 TPA)		
a)	Iron ore	fines	13,00,000	Chhattisgarh / Orissa	~ 600 Kms.	By rail & road (through covered trucks)
2.	For Pelle	et Plant (Pellet	s) –10,00,000	ТРА		
a)	Iron Ore	Concentrate	10,40,000	Own generation		Through covered conveyers
b)	Bentonit	e	8,000	Gujarat	~ 600 Kms.	By rail & road (through covered trucks)
c)	Lime pov	wder	15,000	Chhattisgarh	~ 100 Kms.	By road (through covered trucks)
d)	Anthraci	te Coal	44,000	SECL Chhattisgarh / MCL Odisha	~ 500 Kms.	By rail & road (through covered trucks)
	OR					
	(OR) LDL	/LSHS	13,300 KL/Annum	Chhattisgarh	~ 100 Kms.	By road (through tanker)
3.	For DRI	Kilns (Sponge I	ron) – 3,30,0	00 TPA		
	Pellets (2	100 %)	4,95,000	Own generation		Through covered conveyers
a)			or			
a)	Iron ore	(100%)	5,28,000	Barbil, Orissa NMDC, Chhattisgarh	~ 500 Kms.	By rail & road (through covered trucks)
b)	Coal	Indian	4,29,000	SECL Chhattisgarh / MCL Odisha	~ 500 Kms.	By rail & road (through covered trucks)
				(or)		
		Imported	2,74,560	Indonesia / South	~ 600 Kms.	Through sea route, rai

PIONEER ENVIRO

Executive Summary

4

				Africa / Australia	(from Vizag Port)	route & by road (through covered trucks)
c)	Dolomite		16,500	Chhattisgarh	~ 100 Kms.	By road (through covered trucks)
4.	For Steel N	lelting Shop	(Billets/ Ing	ots/Hot Billets) – 2,6	4,000 TPA	
a)	Sponge Iro	n	2,67,000	Inhouse Generation		Through covered conveyers
b)	MS Scrap /	Pig Iron	40,000	Chhattisgarh	~ 100 Kms.	By road (through covered trucks)
c)	Ferro alloys	5	13,000	Inhouse Generation		By road (through covered trucks)
5.	For Rolling	Mill throug	h Hot chargiı	ng (Rolled Products)	– 2,52,450 TPA	
a)	Hot Billets		2,61,361	Inhouse Generation		
6.	For Rolling TPA	Mill throug	h Reheating	Furance (Rolled Prod	ucts) – 44,550	
b)	M.S. Billets (External P		49,000	Chhattisgarh	~ 100 Kms.	By road (through covered trucks)
c)	LDO / LSHS		218 KL/annum	Nearby IOCL Depot	~ 100 Kms.	By road (through Tankers)
7.	For CFBC B	oiler [Powe	Generation	16 MW]		
a)	Dolochar +	Dolochar	66,000	Inhouse Generation		through covered conveyors
	Indian Coal	Indian Coal	73,920	SECL Chhattisgarh / MCL Odisha	~ 500 Kms.	By rail & road (through covered trucks)
			OR			
b)	Dolochar +	Dolochar	66,000	Inhouse Generation		through covered conveyors
	Imported Coal	Imported Coal	35,536	Indonesia / South Africa / Australia	~ 600 Kms. (from VizagPort)	Through sea route, rai route & by road (through covered trucks)
8.	For Ferro A	lloys (3 x 6	MVA)			
7 (i)	For Ferro Si	ilicon - 17,95	5 TPA			
a)	Quartz		27,292	Chhattisgarh / Andhra Pradesh	~ 500 Kms.	By road (through covered trucks)
b)	MS Scrap		4,219	Andhra Pradesh	~ 500 Kms.	By road (through covered

Executive Summary

5 🔺

Sky Steel and Power Private Limited Proposed Steel Plant Summary on Environmental Impact Assessment Report Kesda(V), Simga (T), Baloda bazar(D), Chhattisgarh

					trucks)
c)	Mill scales	628	Inhouse		By road
			Generation		(through covered
					trucks)
d)	LAM coke	10,055			By road
,		,	Chhattisgarh	~ 100 Kms.	, (through covered
					trucks)
e)	Electrode paste	359	Maharashtra /	~ 300 Kms.	By road
с,		555	West Bengal	500 Km3.	(through covered
			West Deliga		trucks)
L)	De efilter duet	602	La barras		ti ucksj
f)	Bagfilter dust	682	Inhouse		
			Generation		
7 (ii)	For Ferro Manganese –		1		
a)	Manganese Ore	1,02,703	MOIL / OMC	~ 500 Kms.	By Rail & Road
					(through covered
					trucks)
b)	LAM coke	16,478	Andhra Pradesh	~ 500 Kms.	By road
					(through covered
					trucks)
c)	Dolomite	7,674	Chhattisgarh /	~ 500 Kms.	By road
-,		, -	Andhra Pradesh		(through covered
					trucks)
d)	MS Scrap / Mill scales	6,772	Inhouse		By road
u)		0,772	Generation		(through covered
			Generation		
	Electro de Deste	F 0 7	Mahayaabtya /	~ 200 Kmaa	trucks)
e)	Electrode Paste	587	Maharashtra /	~ 300 Kms.	By road
			West Bengal		(through covered
					trucks)
f)	Bagfilter dust	2,257	In house		
			generation		
7 (iii)	For Silico Manganese –	23,940 TPA			
a)			MOIL / OMC	~ 500 Kms.	By Rail & Road
	Manganese Ore	39,022			(through covered
					trucks)
b)			In house		
,	FeMn Slag	20,349	generation		
•			-		
c)			Andhra Pradesh	~ 500 Kms.	By road
	LAM Coke	8,978			(through covered
					trucks)
d)			Chhattisgarh /	~ 500 Kms.	By road
	Dolomite	5,387	Andhra Pradesh		(through covered
		-			trucks)
e)	Electrode paste	479	Maharashtra /	~ 300 Kms.	By road
~/		., 5	West Bengal	000 1000	(through covered
					trucks)
					u ucksj

PIONEER ENVIRO

Executive Summary

6

Sky Steel and Power Private Limited	Summary on Environmental Impact Assessment Report
Proposed Steel Plant	Kesda(V), Simga (T), Baloda bazar(D), Chhattisgarh

f)	Quartz	5,746	Chhattisgarh /	~ 500 Kms.	By road
			Andhra Pradesh		(through covered
					trucks)
g)	Dog filton dugt	250	In house		
	Bag filter dust	359	generation		
7 (iv)	For Ferro Chrome – 26,	600 TPA	· · · · · ·		
				~ 500 Kms.	By road
			Sukinda, Odisha		(through covered
	Chucuma Outo	F2 200		~ 600 Kms.	trucks)
a)	Chrome Ore	53,200	Import, South	(from Vizag	From Port By Road
			Africa	Port)	(through covered
					Trucks)
				~ 500 Kms.	By road
b)	LAM Coke	8,778	Andhra Pradesh		(through covered
					trucks)
			Chhattisgarh /	~ 500 Kms.	By road
c)	Quartz	4,655	Andhra Pradesh		(through covered
			Allullia Plauesii		trucks)
			Inhouse		By road
d)	MS Scrap / Mill Scale	3,990	Generation		(through covered
			Generation		trucks)
			Chhattisgarh /	~ 500 Kms.	By road
e)	Magnetite / Bauxite	4,495	Maharashtra		(through covered
			ividiididsiitid		trucks)
			Maharashtra /	~ 300 Kms.	By road
f)	Electrode Paste	798			(through covered
			West Bengal		trucks)
g)	Bagfilter dust	1,702	Own generation		

1.4 MANUFACTURING PROCESS

1.4.1 Iron Ore Beneficiation

Beneficiation is a process which removes the gang particle like Alumina, Silica from the Iron Ore. Basically, it separates Fe_2O_3 or Fe_3O_4 from other impurities in the iron ore. In this process the Fe content is improve to maximum possible extent. The highest can be 70% i.e. purest form.

1.4.2 Pelletization

Iron ore fines will be grinded in Ball mills. The concentrate will be fed to thickener and subsequently to filtering unit. The filter cake will be sent to pellet plant comprising of Travelling grate kiln. Green pellets will be produced from this process. The flue gases from grate kiln will be treated in ESP and discharged through a stack.

1.4.3 Sponge Iron (DRI)

The proposal consists of 2 x 350 TPD and 3 x 100 TPD of DRI kilns to produce 3,30,000 TPA of Sponge Iron with 2 x 8 MW & 3 x 2 MW WHRB facility. Refractory lined rotary kilns will be used for reduction of iron ore in solid state.

Refractory lined rotary kilns will be used for reduction of iron ore in solid state. A central Burner located at the discharge end will be used for initial heating of the kiln.

Iron ore will be continuously fed into the kiln along with coal which has dual role of fuel as well as reductant. Dolomite will be added to scavenge the sulphur from the coal. A number of air tubes will be provided along the length of the kiln. The desired temperature profile will be maintained by controlling the volume of the combustion air through these tubes. The Carbon monoxide generated due to the combustion of coal, reduces the iron ore and converts it into sponge iron. The rotary kiln is primarily divided into two zones viz. the pre heating zone and the reduction zone. The preheating zone extends over 30 to 50 % of the length of the kiln and in this the moisture in the charge will be driven off and the volatile matter in the coal will be burnt with the combustion air supplied through the air tubes. Heat from the combustion raises the temperature of the lining and the bed surface. As the kiln rotates, the lining transfers the heat to the charge. Charge material, pre-heated to about 1000⁰C enters the reduction zone. Temperature of the order of 1050[°]C will be maintained in the reduction zone, which is the appropriate temperature for solid state reduction of iron oxide to metallic iron.

This hot material will be transferred to Heat exchanger. In Heat exchanger the material will be cooled to 160^oC. The cooler discharge material consists of sponge iron lumps, sponge iron fines and char. Magnetic and non-magnetic material will be separated through magnetic separators and stored in separate bins. The hot flue gases will be taken to a Waste Heat Recovery Boilers and after heat recovery they will be treated in high efficiency ESP and discharged into the atmosphere through stack whose height will be in accordance with CPCB norms.

1.4.4 Steel Melting Shop

In Steel Melting Shop (SMS), Sponge Iron will be melted along with melting scrap and fluxes to make pure liquid steel and then to mould it in required size billets. The SMS will consist ofInduction furnace, Ladles, Cranes & Continuous Casting Machine (CCM). There will be 4 x 20 T Induction furnaces to manufacture Hot Billets/ Billets of 2,64,000 TPA. Either the Hot Billets produced from LRF will be directly sent to Rolling Mill without using Re-heating Furnace through Hot charging method (or) Billets / Ingots will be sent to Reheating Furnace to reheat the Billets and then sent to Rolling Mill to manufacture Rolled Products.

1.4.4 Rolling Mill

The Hot Billets produced from Induction Furnaces will be directly sent to Rolling Mill to produce Rolled Products (OR) Hot Billetswill be cooled and stored will be sent to reheating furnaces for the heating and will be sent to Rolling Mill. Furnace will be heated with LDO / LSHS. A Rolling mill will be installed in the plant to produce 2,97,000 TPA of TMT Bars / Structural Steels.

1.4.5 Submerged Electric Arc Furnace

3 no.s of Submerged Electric Arc Furnace each of 6 MVA will be setup in the proposed plant. Ferro manganese, silicon-manganese will be produced using manganese ore as main raw material, Ferro silicon will be produced using Quartz as main raw material & Ferro Chrome will be produced using Chrome Ore as main raw material in a sub-merged arc furnace using reducer (Coke) under high voltage.

1.4.6 Power Generation

Through WHRB Boiler

The hot flue gases from proposed 2 x 350 TPD & 3 x 100 TPD TPD DRI kilns will pass through waste heat recovery Boiler to recover the heat and to generate 22 MW (2 x 8 MW & 3 x 2 MW) electricity. The gases after heat recovery will pass through ESP and then discharged through chimneys into the atmosphere for effective dispersion of emissions into the atmosphere through stacks of adequate height.

Through CFBC Boiler

Coal (Imported / Indian) along with dolochar will be used as fuel in CFBC Boilers to generate 16 MW (1 x 16 MW) of electricity. The flue-gases will be treated in high efficiency ESP and then discharged through a stack of adequate height into the atmosphere.

1.5 Water Requirement

- Water required for the proposed project will be 2697 KLD. This includes make up water for I/O Benefication, Pellet Plant, DRI Kiln, Induction Furnace, Rolling Mill, Ferro Alloys & Domestic.
- Air cooled condensers will be provided for Power plant.
- Water required for proposed project will be sourced from Shivnath River (which is at a distance of 9.5 Kms. from the project site). Dedicated pipeline will be laid upto the site.
- Water drawl permission from Water Resource Department, Chhattisgarh is under process.

S.No.	Unit	Quantity in KLD
1.	Make-up water for I/O beneficiation unit	520
2.	Make-up water for Pellet Plant	400
3.	Make-up water for DRI plant	330
4.	Make-up water for SMS plant	185
5.	Make-up water for Rolling mill	270
6.	Make-up water for Ferro Alloy plant	60
7.	Captive Power Plant	
	 Cooling Tower Make-up 	320
	Boiler make-up	455
	 D.M. plant regeneration water 	137
8.	Domestic	20
	Total	2697

Table No.11.1.4: Water Requirement Breakup

1.6 Wastewater Generation

- Total wastewater generation will be 324 KLD.
- There will be no effluent discharge in the I/O ore beneficiation unit, Pelletisation plant, Sponge Iron, Induction Furnaces, Ferro Alloys unit as closed-circuit cooling system will be adopted.

- Thickener over flow from I/ O beneficiation process will be recycled along with with makeup water after treatement in settling tank. Thickener under flow will be taken to filter press an after dewatering the filter cake will be stored in the storage yard.
- Air Cooled condensers will be provided in the power plant, which will be reduce the water consumption significantly. Hence wastewater generation will also be minimized.
- Effluent from Rolling Mill will be sent to settling tank & will be recycled through closed circuit cooling system.
- Effluent from power plant will be treated in ETP and after ensuring compliance with SPCB norms, it will be utilized for dust suppression, ash conditioning and for greenbelt development.
- Sanitary wastewater will be treated in STP.
- Garland drains will be provided around all the raw material stacking areas.
- During monsoon the treated effluent after ensuring compliance with norms, will be used as makeup water for Rolling mill & SMS.

S.No.	Source	Generation (KLD)
1.	Power Plant	
	a) Cooling Tower blowdown	80
	b) Boilers blowdown	91
	c) D.M. plant regeneration water	137
2.	Sanitary Wastewater	16
	Total	324

Breakup Of Wastewater Generation

1.7 Wastewater Characteristics

The following are the Characteristics of wastewater.

Characteristics of Effluent

PARAMETER	CONCENTRATION			
	Cooling Tower	DM Plant	Boiler	Sanitary
	blowdown	Regeneration	Blowdown	waste water
рН	7.0 - 8.0	5.0 - 10.0	9.5 – 10.5	7.0 – 8.5
BOD (mg/l)				200 – 250
COD (mg/l)				300 - 400
TDS (mg/l)	1000	5000 - 6000	1000 mg/l	800 - 900
Oil & Grease (mg/l)		10		5 - 10
TSS (mg/l)				150-200

2.0 DESCRIPTION OF ENVIRONMENT

Base line data has been collected on ambient air quality, water quality, noise levels, flora and fauna and socio economic details of people within 10 km radius of the plant.

2.1 Ambient air quality

Ambient air quality was monitored for $PM_{2.5}$, PM_{10} , SO_2 , NOx & CO at 8 stations including project site during**1**st**October 2021 to 31**st**December 2021 (for 8 nos. of Stations)**. The following are the concentrations of various parameters at the monitoring stations:

Parameter		Concentration
PM _{2.5}	:	23.3 to 32.1 μg/m ³
PM ₁₀	:	38.5 to 53.6 μg/m ³
SO ₂	:	7.4 to 15.2 μ g/m ³
NO _X	:	9.2 to 20.5 μg/m ³
CO	:	415 to 1225 μg/m ³

2.2 Water Quality

2.2.1 Surface Water Quality

Seasonal Nala is Passing through the site to the West to Eastern direction, Mahanadhi bhatapara Canal - 0.15 km (SE), Shivnath River – 9.5 Kms (W), Jamuniya Nadhi – 5.1 Kms. (SE), Ghughua Water Reservoir – 2.9 Kms (SW), Hatbandh Pond – 3.8 Kms.(E), Khilora Pond – 7.6 Kms (NEE), Parsada Pond – 7.4 Kms. (SSW) are present within 10 Km. radius of the project site. 2 no. of samples i.e. 60m Upstream & 60 m Downstream from Shivnath River & each and one sample from Ghughua Water Reservoir, Bhatapara Branch canal have been collected and analyzed for various parameters. No other surface water samples have been collected as the study period. The analysis of samples shows that all the parameters are in accordance with BIS-2296 specifications

2.2.2 Ground Water Quality

8 No. of ground water samples from open wells / bore wells were collected from the nearby villages to assess ground water quality impacts and analyzed for various Physico-Chemical parameters. The analysis of samples shows that all the parameters are in accordance with BIS: 10500 specifications.

2.3 Noise Levels

Noise levels were measured at 8 locations during day time & Night time. The noise levels at the monitoring stations are ranging from 48.64 dBA to 52.82 dBA.

3.0 ANTICIPATED ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

3.1 Prediction of impacts on air quality

The likely emissions from the proposed project are PM_{10} , SO_2 , NOx & CO. The predictions of Ground level concentrations have been carried out using Industrial Source Complex (ISC-3) model. Meteorological data such as wind direction, wind speed, max. and min. temperatures collected at the site have been used as input data to run the model.

The predicted max. Incremental PM_{10} concentrations (24 hourly) due to the proposed project will be 2.96 μ g/M³ at a distance of 1700 m from the stack in the down wind direction over the baseline concentrations.

The predicted incremental rise in Particulate Matter concentration due to the Vehicular emission will be 1.22 μ g/m³.

Hence the total predicted incremental rise in Particulate Matter concentration due to the emission from proposed project and due the vehicular emissions will be 2.96 μ g/m³ + 1.22 μ g/m³ = 4.18 μ g/m³.

The predicted max incremental SO_2 concentrations (24 hourly) due to the emissions from operation of proposed project will be 10.44 μ g/m³ at a distance of 2300 m from the stack in the down wind direction over the baseline concentrations.

The predicted max incremental NOx concentrations (24 hourly) due to the proposed project will be 7.67 μ g/m³ at a distance of 1300 m from the stack in the down wind direction over the baseline concentrations.

The predicted incremental rise in NOx concentration due to the Vehicular emission will be $7.34 \ \mu g/m^3$.

Hence the total predicted incremental rise in NOx concentration due to the emission from project and due the vehicular emission will be 7.67 μ g/m³ + 7.34 μ g/m³ = 15.01 μ g/m³

The predicted incremental rise in CO concentration due to the Vehicular emissions will be $4.89 \ \mu g/m^3$.

Item	ΡΜ ₁₀ (μg/m ³)	SO₂ (µg/m³)	NO _x (μg/m³)	CO (µg/m³)
Maximum baseline conc. in the study area	53.6	15.12	20.5	1225
Maximum predicted incremental rise in concentration due to proposed project (Point Sources)	2.96	10.44	7.67	
Maximum predicted incremental rise in concentration due to proposed project (Vehicular emissions)	1.22		7.34	4.89
Net resultant concentrations during operation of the proposed project	57.78	25.56	35.51	1229.89
National Ambient Air Quality Standards	100	80	80	2000
The net resultant Ground level concentrations during operation of the proposed project are within the NAAQS. Hence there will not be any adverse impact on air environment due to the proposed				

NET RESULTANT MAXIMUM CONCENTRATIONS DUE TO PROPOSED PROJECT

3.2 Prediction of impacts on Noise quality

project.

The major sources of noise generation in the proposed project will be STG, boilers, compressors, DG set, etc. Acoustic enclosures will be provided to the STG. The ambient noise levels will be within the standards prescribed by MoEF vide notification dated 14-02-2000 under the Noise Pollution (Regulation & Control), Rules 2000 i.e. the noise levels will be less than 75 dBA during day time and less than 70 dBA during night time. 8.3 Ha. (20.5 Acres) of extensive greenbelt will be developed to further attenuate the noise levels. Hence there will not be any adverse impact due to noise on population in surrounding areas due to the proposed project.

3.3 Prediction of impacts on Water Environment

Closed loop cooling water system will be adopted in Pellet Plant, DRI, SMS, and Rolling Mill units. Effluent from power plant will be treated and after ensuring compliance with SPCB norms, it will be utilized for dust suppression, ash conditioning and for greenbelt development. Sanitary wastewater will be treated in STP. Treated sewage will be used for Greenbelt development. There will not be any effluent discharge outside the premises. ZLD will be followed. Hence there will not be any adverse impact on environment due to the proposed project.

3.4 Prediction of Impacts on Land Environment

The effluent will be treated to achieve SPCB standards. Zero effluent discharge will be adopted. All the required air pollution control systems will be provided to comply with CPCB / SPCB norms. All solid wastes will be disposed / utilized as per CPCB / SPCB norms. 8.3 Ha. (20.5 Acres)of extensive greenbelt will be developed as per guidelines. Hence, there will not be any adverse impact on land environment due to the proposed project.

3.5 Socio - Economic Environment

There will be certain upliftment in Socio Economic status of the people in the area & development of the area due to the proposed project. Due to this the economic conditions, the educational and medical standards of the people living in the study area will certainly move upwards which will result in overall economic development, improvement in general aesthetic environment and increase in business opportunities.

4.0 ENVIRONMENTAL MONITORING PROGRAMME

Post project monitoring will be conducted as per the guidelines of SPCB and MoEF&CC are tabulated below:

S.No.	Particulars	Frequency of	Duration of	Parameters required
		Monitoring	sampling	to be monitored
1. Wate	er & Wastewater qualit	у		
Α.	Water quality in the	Once in a month except	Composite sampling	As per IS: 10500
	area	for heavy metals which	(24 hourly)	
		will be monitored on		
		quarterly basis.		
В.	Effluent at the outlet	Once in a month	Grab sampling	As per EPA Rules, 1996
	of the ETP		(24 hourly)	
С.	STP Inlet & Outlet	Once in a month	Grab sampling	As per EPA Rules1996
			(24 hourly)	
2. Air (Quality			
Α.	Stack Monitoring	Online monitors		PM
		(all major stacks)		
		Once in a month		PM, SO ₂ & NOx
В.	Ambient Air quality (CAAQMS)	Continuous	Continuous	PM ₁₀ , SO ₂ & NOx
		Quarterly Once	24 hours	PM _{2.5} , PM ₁₀ , SO ₂ , NOx

MONITORING SCHEDULE FOR ENVIRONMENTAL PARAMETERS

Executive Summary

Sky Steel and Power Private Limited	Summary on Environmental Impact Assessment Report	
Proposed Steel Plant	Kesda(V), Simga (T), Baloda bazar(D), Chhattisgarh	

S.No.	Particulars	Frequency of Monitoring	Duration of sampling	Parameters required to be monitored
				& CO
С.	Fugitive emissions	Quarterly Once	8 hours	PM
3. Met	eorological Data		-	
Α.	Meteorological data to be monitored at the plant.	Daily	Continuous monitoring	Temperature, Relative Humidity, rainfall, wind direction & wind speed.
4. Nois	e level monitoring			
Α.	Ambient Noise levels	Quarterly Once	Continuous for 24 hours with 1 hour	Noise levels

5.0 ADDITIONAL STUDIES

No Rehabilitation and Resettlement is involved in the proposed project as there are no habitations in the project site. Hence no R & R study has been carried out.

interval

6.0 **PROJECT BENEFITS**

With the establishment of the proposed project employment potential will increase. Land prices in the area will increase. The economic status of the people in the area will improve due to the proposed project. Periodic medical checkups will be carried out. Top priority will be given to locals in employment.

7.0 ENVIRONMENT MANAGEMENT PLAN

7.1 Air Environment

The following are air emission control systems proposed in the proposed project:

S.No.	Source	Control Equipment	Particulate emission at the outlet	
1.	I/O Beneficiation plant	Bagfilters	<30 mg/Nm ³	
2.	Pellet Plant	Electro Static Precipitators (ESP)	< 30 mg/Nm ³	
3.	DRI kilns with WHRB's	Electro Static Precipitators (ESP)	< 30 mg/Nm ³	
4.	Induction Furnaces with CCM	Fume Extraction system with bag filters	< 30 mg/Nm ³	
5.	Submerged Electric Arc Furnace	4 th Hole Fume Extraction system with bag filters	< 30 mg/Nm ³	
6.	Re-heating furnaces attached to Rolling Mill		< 30 mg/Nm ³	

S.No.	Source	Control Equipment	Particulate emission at the outlet
7.	FBC Boiler	Electro Static Precipitator	< 30 mg/Nm ³
		Lime dosing	3 SOx < 100 mg/Nm
		Low NOx burners with 3-stage combustion, flue gas recirculation	NOx < 100 mg/Nm
		and auto combustion control	
		system will be provided	
Noto ·	Anart from the above Fume extraction	system with hapfilters dust suppress	ion system covered

Note : Apart from the above Fume extraction system with bagfilters, dust suppression system, covered conveyers etc. will also be installed

Apart from the above the following air emission control systems/ measures are proposed in the Plant:

- > All conveyors will be completely covered with G.I. sheets to control fugitive dust.
- All bins will be totally packed and covered so that there will not be any chance for dust leakage.
- All the dust prone points material handling systems will be connected with de-dusting system with bag filters.
- All discharge points and feed points, wherever the possibility of dust generation is there a de-dusting suction point will be provided to collect the dust.

7.2 Water Environment

- Total wastewater generation will be 324 KLD.
- There will be no effluent discharge in the I/O ore beneficiation unit, Pelletisation plant, Sponge Iron, Induction Furnaces, Ferro Alloys unit as closed-circuit cooling system will be adopted.
- Air Cooled condensers will be provided in the power plant, which will be reduce the water consumption significantly. Hence wastewater generation will also be minimized.
- Effluent from Rolling Mill will be sent to settling tank & will be recycled through closed circuit cooling system.
- Effluent from power plant will be treated in ETP and after ensuring compliance with SPCB norms, it will be utilized for dust suppression, ash conditioning and for greenbelt development.
- Sanitary wastewater will be treated in STP.

- Garland drains will be provided around all the raw material stacking areas.
- During monsoon the treated effluent after ensuring compliance with norms, will be used as makeup water for Rolling mill & SMS.

EFFLUENT TREATMENT PLANT

pH of the boiler blowdown will be between 9.5 to 10.5. Hence a neutralization tank will be constructed for neutralizing the boiler blow down. DM plant regeneration water will be neutralized in a neutralization tank. After neutralization, these two effluent streams will be mixed with Cooling Tower blowdown in a Central Monitoring Basin (CMB). Service water will be treated in an oil separator and after treatment it will be taken to CMB. The treated effluent will be utilized for dust suppression, ash conditioning and for Green belt development. No effluent will be let out of the plant premises. Hence Zero discharge concept will be implemented.

The following will be treated combined effluent characteristics.

٠	рН	-	6.5 - 8.5
•	TSS	-	< 100 mg/l
•	Oil & Grease	-	< 10 mg/l
•	Free available chlorine	-	< 1.0 mg/l
•	Copper	-	<1.0 mg/l
•	Iron	-	< 1.0 mg/l
•	Zinc	-	< 1.0 mg/l
•	Chromium	-	< 0.2 mg/l
•	Phosphates	-	< 5.0 mg/l

Treated Sewage Characteristics

S.No.	Parameters	Parameters limit
1.	рН	6.5 – 8.0
2.	BOD (mg/ L)	Not more than 10
3.	COD (mg/ L)	Not more than 50
4.	TSS (mg/ L)	Not more than 20
5.	NH ₄ -N (mg/ L)	Not more than 5
6.	N-Total (mg/ L)	Not more than 10
7.	Fecal Coliform (MPN/100 ml)	Less than 100

TREATED EFFLUENT DISPOSAL

Effluent quantity to be used for ash conditioning	:	94 KLD
Effluent to be used for dust suppression in CHP	:	130 KLD
Effluent to be used for Fly ash brick making	:	10 KLD
Effluent to be used for Greenbelt development	:	90 KLD

20.5 Acres of greenbelt will be developed within the plant premises by using the treated effluent. A dedicated pipe distribution network will be provided for using the treated effluent for greenbelt development.

7.3 Noise Environment

The major sources of noise generation in the proposed project will be STG, boilers, compressors, DG set, etc. Acoustic enclosure will be provided. All the machinery will be manufactured in accordance with MoEF&CC norms on Noise levels. The employees working near the noise generating sources will be provided with earplugs. The extensive greenbelt development proposed within the plant premises will help in attenuating the noise levels further. Noise barriers in the form of trees are recommended to be grown around administrative block and other utility units.

7.4 Land Environment

The wastewater generated from the proposed project will be treated in the Effluent Treatment Plant to comply with the SPCB standards and will be used for dust suppression, ash conditioning and for greenbelt development. All the required Air emission control systems will be installed and operated to comply with SPCB norms. Solid wastes will be disposed off as per norms. Extensive greenbelt will be developed in the plant premises. Desirable beautification and landscaping practices will be followed. Hence there will not be any impact due to the proposed project.

Sky Steel and Power Private Limited	Summary on Environmental Impact Assessment Report
Proposed Steel Plant	Kesda(V), Simga (T), Baloda bazar(D), Chhattisgarh

Solid waste generation and disposal

Sr.	Waste Quantity Proposed method of disposal			
No.	Waste	(TPA)	roposed method of disposal	
1.	Tailings from I/O	2,60,000	Will be taken to filter press & recovered the	
1.	beneficiation	2,00,000	water. Cake of tailing will be stored in tailing yard	
	Deficiciation		& it will given to nearby Ceramic Unit.	
2	Ash / dust frame			
2.	Ash / dust from	30,000	Will be utilized in the proposed Brick	
	Pellet plant	=	Manufacturing Unit	
3.	Ash from DRI	59,400	Will be utilized in the proposed Brick	
			Manufacturing Unit	
4.	Dolochar	66,000	Will be used in proposes CFBC power plant as fuel.	
5.	Kiln Accretion Slag	2,970	Will be utilized in the proposed Brick	
			Manufacturing Unit	
6.	Wet scrapper sludge	15,180	Will be utilized in the proposed Brick	
			Manufacturing Unit	
7.	SMS Slag	26,400	Slag from SMS will be crushed and iron will be	
			recovered & then remaining non -magnetic	
			material being inert by nature will be used in	
			proposed Brick Manufacturing Unit	
8.	End Cuttings from	8,911	Will be reused in the SMS	
	Rolling Mill			
9.	Mill scales from	891	Mill scales will be recycled to Ferro alloys unit.	
	Rolling Mill		, , , ,	
10.	Ash from Power	72,864	Will be utilized in the proposed Brick	
	Plant	,	Manufacturing Unit	
11.	Bagfilter Dust		Will be utilized in the proposed Brick	
		2,300	Manufacturing Unit	
12.	Slag from FeMn	27,294	Will be reused in manufacture of SiMn as it	
		27,231	contains high SiO ₂ and Silicon.	
	(or)			
13.	Slag from FeSi	4,324	Will be given to Cast iron foundries	
13.	(or)	4,524		
14.	Slag from SiMn	20,080	will be used for Road construction / will be given	
14.	Sidg ITOTT SIMIT	20,080	to slag cement manufacturing	
	(or)			
1 -	(or)	15 440	Will be processed in Zigging plant for Chrome recovery	
15.	Slag from FeCr	15,449	Will be processed in Zigging plant for Chrome recovery. After Chrome recovery, the left-over slag will be	
			analysed for Chrome content through TCLP test, if the	
			Chrome content in the slag is within the permissible	
			limits, then it will be utilised for Road laying /brick	
			manufacturing.	
			If Chrome content exceeds the permissible limits, it	
			will be sent to nearest TSDF.	

Sky Steel and Power Private Limited	Summary on Environmental Impact Assessment Report
Proposed Steel Plant	Kesda(V), Simga (T), Baloda bazar(D), Chhattisgarh

7.5 Greenbelt Development

- 8.3 Ha. (20.5 Acres) of Greenbelt will be developed within the project site.
- 2500 plants will be planted per Hectare as per CPCB norms.
- 10 m to 90 m wide greenbelt will be developed all around the project site.

7.6 Cost for Environment Protection

Capital Cost for Environment Protection for proposed plant	: Rs. 54.1 Crores
Recurring Cost per annum for Environmental protection	: Rs. 6.46 Crores

7.7 Implementation of CREP Recommendations

All the CREP recommendations will be strictly followed.

- Continuous stack monitoring system is proposed for major stacks.
- Online Ambient Air Quality Monitoring Stations will be established in consultation with SPCB during operation of the plant.
- > Fugitive emission monitoring will be carried out as per CPCB norms.
- > Energy meters will be installed for all the pollution control systems.
