SUMMARY ON

ENVIRONMENTAL IMPACT ASSESSMENT REPORT

OF

Navic Steel & Power Pvt. Ltd.

[Establishment of Greenfield steel plant comprising of Iron ore beneficiation (8,50,000 TPA), Pellet Plant (6,00,000 TPA), Gasifier for Pellet Plant (21,000 Nm³/hr) DRI Kilns (6,27,000 TPA), Induction Furnace with matching LRF & CCM (Hot Billets / Billets / Ingots - 4,62,000 TPA), Rolling Mill (TMT Bars / Structural Steel - 4,62,000 TPA), Gasifier for Reheating Furnace (3570 Nm³/hr), Ferro Alloy Unit (FeSi – 42,000 TPA/FeMn – 1,51,200 TPA/SiMn – 86,400 TPA/FeCr – 90,000 TPA/Pig Iron – 60,000 TPA), Briquetting Plant (600 Kg/Hr), WHRB based Power Plant –46 MW , FBC based Power Plant - 20 MW& Brick Manufacturing unit (1,00,000 Bricks / Day)]

at

Jhiriya&Bitkuli Villages, Bemetara Tehsil & District, Chhattisgarh

Submitted to

CHHATTISGARH ENVIRONMENT CONSERVATION BOARD Chhattisgarh

1.0 PROJECT DESCRIPTION

Navic Steel & Power Pvt. Ltd.is proposing to establish a aGreenfield steel plant comprising of Iron ore beneficiation (8,50,000 TPA), Pellet Plant (6,00,000 TPA), Gasifier for Pellet Plant (21,000 Nm3/hr.) DRI Kilns (6,27,000 TPA), Induction Furnace with matching LRF & CCM (Billets / Ingots / Hot Billets- 4,62,000 TPA), Rolling Mill (TMT Bars / Structural Steel -4,62,000 TPA),Gasifier for Reheating Furnace (3570 Nm³/hr.), Ferro Alloy Unit (FeSi – 42,000 TPA/FeMn – 1,51,200 TPA/SiMn – 86,400 TPA/FeCr – 90,000 TPA/Pig Iron – 60,000 TPA), Briquetting Plant (600 Kg/Hr.), WHRB based Power Plant –46 MW , FBC based Power Plant -20 MW& Brick Manufacturing unit (1,00,000 Bricks / Day) at Jhiriya&BitkuliVillages, BemetaraTehsil &District, Chhattisgarh.The project cost envisaged for the proposed project is Rs. 850 Crores.

Total land envisaged for the proposed project is **43.5 Ha. (107.575 Acres)**. Following is the status of land acquisition:

S.No.	Status of land	Extent (in Ha.)	Extent (in Acres)
1.	Land Registered in the name of M/s. Navic Steel &	0.86	2.125
	Power Pvt. Ltd.		
2.	Land for which agreements entered with M/s.	36.97	91.350
	Shouryalspat Pvt. Ltd. (Sistern Concern Unit)		
3.	Land for which agreements entered with Private	5.70	14.100
	Land owners		
	Total land	43.53	107.575

Table No. 1.1: Status of land acquisition

As per the Ministry of Environment, Forests & Climate Change, New Delhi notification, dated 14th September, 2006 and its subsequent amendments, all Primary metallurgical processing industries are classified under Category 'A'. The Ministry of Environment, Forests & Climate Change, New Delhi has accorded Terms of Reference (TOR) for the proposed project vide letter no. **IA-J-11011/122/2022-IA-II(IND-I)**, dated **3rd June 2022**. The EIA Report has been prepared by incorporating the TOR stipulated by the Hon'ble EAC.

Pioneer Enviro Laboratories & Consultants Private Limited, Hyderabad, which is accredited by NABET, Quality Council of India, vide certificate No. NABET/ EIA/ 1922/ SA 0148 (Rev.01), for preparing EIA report for Metallurgical Unit, have prepared Environmental Impact Assessment (EIA) report for the proposed projectby incorporating the TOR approved by

Ministry of Environment, Forests& Climate Change, New Delhi. The report contains detailed description of the following:

- Characterization of status of environment with in an area of 10 km radius from the plant for major environmental components including air, water, noise, soil, flora, fauna and socio-economic environment.
- Assessment of air emissions, liquid waste and solid waste from the proposed project along with the noise level assessment.
- Environmental Management Plan comprising of emission control measures proposed to be adopted in the proposed project, solid waste management, Greenbelt development.
- Post Project Environmental Monitoring & Budget for Environmental Protection Measures.

1.1 ENVIRONMENTAL SETTING WITHIN 10 Km. RADIUS OF THE PLANT SITE

The following is the environmental setting within the 10 Km. radius of the Project site:

S.No.	Salient Features / Environmental features	Distance w.r.t. site / Remarks
1.	Type of Land (Project site)	Private Land (Agricultural Land)
2.	Type of Land (Study Area)	Settlement (4.6%),Tank/River(6.9%), Single
		Crop (69.9 %), Double Crop (7.8 %), Plantation
		(3.3 %), Land with scrub (5.1 %), Land without
		scrub (2.4 %).
3.	National Park/ Wildlife sanctuary /	Nil
	Biosphere reserve / Tiger Reserve /	
	Elephant Corridor / migratory routes for	
	Birds	
4.	Historical places / Places of Tourist	Nil
	importance / Archeological sites	
5.	Critically polluted area as per MoEF&CC	None
	Office Memorandum dated 13 th January	And also the Plant area does not fall in the
	2010	areas given in Hon'ble NGT order issued vide
		dated 10 th July 2019.
6.	Defence Installations	Nil
7.	Nearest village	Jhiria Village (0.63 Kms.)
8.	No. of Villages in the Study Area	82 Nos.
9.	Nearest Hospital	PHC Chandanu at 1.90 Kms.
10.	Nearest School	Bitkuli Village at 1.2 Kms.
11.	Forests	Nil
12.	Water body	Unnamed Nala passing through Project site,

Table No. 1.1: Environment Setting within 10 Kms. radius of the site

Executive Summary

S.No.	Salient Features / Environmental features	Distance w.r.t. site / Remarks
		Seonath River (2.3 Kms. – SE Direction), Karua
		Nala (0.18 Kms. – South Direction), Hanp River
		(3.55 Kms. – North Direction) & Few ponds are
		present within 10 Kms. radius of the project
		site.
13.	Nearest Highway	State Highway Dholiyaa to Badnara – 1.48 Kms.
		(North direction)
14.	Nearest Railway Station	Hathbandh Railway Station – 23.8 Kms. (Aerial)
15.	Nearest Port facility	Nil within 10 Km. Radius.
16.	Nearest Airport	Nil within 10 Kms. Radius
		[Bilaspur Airport – 50.6Kms. (Aerial)]
17.	Nearest Interstate Boundary	Nil
18.	Seismic zoneas per IS-1893	Seismic zone – II
19.	R&R	There is no rehabilitation and resettlement
		issue, as there are no habitations present in the
		site area.
20.	Litigation / court case is pending against	Nil
	the proposed project / proposed site and	
	or any direction passed by the court of law	
	against the project	

1.2 PLANT CONFIGURATION AND PRODUCTION CAPACITY

Following is the proposed plant configuration and proposed production capacities:

Table No.1.2: Proposed Plant Configuration & Production Capacities

S.No.	Units (Products)	Plant Configuration (Production Capacity)
1.	Iron ore Beneficiation	0.85 MTPA
	(Iron ore concentrate)	
2.	Pellet Plant	0.60 MTPA
	(Pellet)	
3.	Gasifier for Pellet Plant	21,000 Nm ³ /hr.
4.	DRI Kilns	6,27,000 TPA
	(Sponge Iron)	(2 x 350 TPD & 2 x 600 TPD)
5.	Induction Furnaces with LRF & CCM	4,62,000 TPA
	(Hot Billets / MS Billets / Ingots)	(4 x 15 T & 4 x 20 T)
6.	Rolling mill	4,62,000 TPA
	(TMT bars / Structural Steel)	(4 x 350 TPD)
	(85% Hot charging with Hot Billets and	
	remaining 15% through RHF)	
7.	Gasifier for Reheating Furnace	3,570Nm ³ /hr
8.	Ferro Alloys Unit	FeSi – 42,000 TPA/FeMn – 1,51,200
	(FeSi / FeMn / SiMn / FeCr / Pig Iron)	TPA/SiMn – 86,400 TPA/FeCr – 90,000
		TPA/Pig Iron – 60,000 TPA
		(2 x 18 MVA & 2 x 9 MVA)

Executive Summary

Jhiriya & BitkuliVillages, BemetaraTehsil& District, Chhattisgarh

S.No.	Units (Products)		Plant Configuration
			(Production Capacity)
9.	Briquetting Plant		600 Kg/Hr.
10.	Brick Manufacturing Unit		1,00,000 Bricks/ day
11.	Power Plant	WHRB Power Plant	46.0 MW
	(66 MW)	(2 x 8 MW & 2 x 15 MW)	
		CFBC Power Plant	20.0 MW
		(1 x 20 MW)	

1.3 RAW MATERIAL REQUIRMENT

The following will be the raw material requirement for the proposed project:

Table No.1.3: Raw Material Requirement, Source & Mode of Transport

			Quantity		Distance	
S.No.	Raw Mate	rial		Sources	from	Mode of Transport
			(IPA)		site (in Kms.)	
1.	Iron Ore Beneficiation Plant (8,50,000 TPA – throughput capacity)					
a)	Iron ore fi	nes	8,50,000	Chhatticgarh /	~ 600 Kms.	By rail & road
				Oricco		(through covered
				Ulissa		trucks)
2.	Pellet Plar	nt (Pellets) - 6,00,	000 TPA			
2)	Iron Oro C	oncontrato	6 60 000	Own		Through covered
aj	lionorec	Uncentrate	0,00,000	generation		conveyers
					~ 600 Kms.	By rail & road
b)	Bentonite		4,800	Gujarat		(through covered
						trucks)
						By road
c)	Limestone	2	9,000	Chhattisgarh	~ 100 Kms.	(through covered
						trucks)
				SECL	~ 500 Kms.	By rail & road
d)	Anthracite	e Coal	21,000	Chhattisgarh /		(through covered
		-		MCL Odisha		trucks)
				SECL	~ 500 Kms.	By rail & road
	Coal for	Indian Coal	63,000	Chhattisgarh /		(through covered
	Gasifier			MCL Odisha		trucks)
e)	(21 000			Indonesia /	~ 600 Kms.	Through sea route,
	Nm^3/hr)	Imported Coal	40 320	South Africa /	(from Vizag	rail route & by road
	•••••	imported coar	40,520	Australia	Port)	(through covered
				Australia		trucks)
3.	DRI Kilns (Sponge Iron) – 6,	27,000 TPA	1		
				Own		Through covered
				generation		conveyers
اد	Dollots (10	0 %)	9 09 150	&		&
aj		0 /0]	5,05,150			By road
				outsido		(through covered
				outside		trucks)

Jhiriya & BitkuliVillages, BemetaraTehsil& District, Chhattisgarh

S.No.	Raw Materia	I	Quantity (TPA)	Sources	Distance from site (in Kms.)	Mode of Transport
b)	Iron ore (100	%)	10,03,200	Barbil, Orissa NMDC,	~ 500 Kms.	By rail & road (through covered
		Indian	8,15,100	Chhattisgarh SECL Chhattisgarh / MCL Odisha	~ 500 Kms.	trucks) By rail & road (through covered trucks)
c)	Coal	Imported	5,21,664	Indonesia / South Africa / Australia	~ 600 Kms. (from Vizag Port)	Through sea route, rail route & by road (through covered trucks)
d)	Dolomite		31,350	Chhattisgarh	~ 100 Kms.	By road (through covered trucks)
4.	Steel Melting	g Shop (Hot Bil	lets /Billets/ Ing	ots) – 4,62,000 TP	Α	
a)	Sponge Iron		4,67,000	Own generation		Through covered conveyers
b)	MS Scrap / P	g Iron	70,000	Chhattisgarh	~ 100 Kms.	By road (through covered trucks)
c)	Ferro alloys		23,000	Own generation		By road (through covered trucks)
5.	Rolling Mill t	hrough Hot ch	arging& Reheat	ing Furnace (Rolle	d Products) – 4,	62,000 TPA
a)	Hot Billets		4,08,408	Own generation		
b)	Billets / Ingot	S	76,230	Own generation & Purchased from outside	 ~ 100 Kms.	 By road (through covered
c)	Coal for Gasifier (3,570Nm ³ /h	Indian Coal	10,810	SECL Chhattisgarh / MCL Odisha	~ 500 Kms.	trucks) By rail & road (through covered trucks)
		Imported Coal	7,000	Indonesia / South Africa / Australia	~ 600 Kms. (from Vizag Port)	Through sea route, rail route & by road (through covered trucks)
d)	LDO		2244 Kl/annum	Nearby IOCL Depot	~ 100 Kms.	By road (through Tankers)
6.	FBC Boiler [P	ower Generat	ion - 1 x 20 MW]	1	
a)	Indian Coal (100 %)	1,18,800	SECL Chhattisgarh /	~ 500 Kms.	By rail & road (through covered
5	Executive Summary					

PIONEER ENVIRO Laboratories & Consultants Pvt. Ltd

Jhiriya & BitkuliVillages, BemetaraTehsil& District, Chhattisgarh

S.No.	Raw Materia	I	Quantity	Sources	Distance from	Mode of Transport
			(IPA)		site (in Kms.)	
				MCL Odisha		trucks)
				OR	1	
				Indonesia /	~ 600 Kms.	Through sea route,
b)	Imported Coa	al (100 %)	76.032	South Africa /	(from Vizag	rail route & by road
~,				Australia	Port)	(through covered
						trucks)
		1		OR		
C)	Dolochar +	Dolochar	1,25,400	In plant		through covered
	Indian Coal		50.400	generation		conveyors
		Indian Coal	56,100	SECL	~ 500 Kms.	By rail & road
				Chhattisgarh /		(through covered
				IVICL Odisha		trucks)
الم	Delechert	Dolocher	1 35 400			through covered
a)	Dolochar +	Dolochar	1,25,400	in plant		through covered
	Coal	Imported	19 660		~ 600 Kmc	Through cop routo
	Cuar	Cool	46,000	South Africa /	(from Vizog	rail routo & by road
		Cuar		Australia	(ITOTH VIZAg	(through covered
				Australia	1010	trucks)
7	For Ferro Allo		Δ& 2 χ 9 Μ\/Δ)			ti deksj
7 (i)	Ferro Silicon	-42.000 TPA				
- (1)		,		Chhattisgarh /	~ 500 Kms.	Bv road
a)	Quartz		63,840	Andhra		(through covered
,			,	Pradesh		trucks)
				Andhra	~ 500 Kms.	By road
b)	LAM coke		23,520	Pradesh		(through covered
						trucks)
				Inhouse		By road
c)	MS Scrap		1,470	Generation		(through covered
						trucks)
				Inhouse		By road
d)	Mill scales		9870	Generation		(through covered
						trucks)
				Maharashtra /	~ 300 Kms.	By road
۱۵	Electrode nas	to	840	West Bengal		
C)		ole -	840			(through covered
						trucks)
				Inhouse		By road
f)	Briquetted Ba	ag filter dust	1,596	Generation		(through covered
						trucks)
7 (ii)	Ferro Manga	nese – 1,51,20	ΟΟΤΡΑ			
					~ 500 Kms.	By Rail & Road
a)	Manganese C	Dre	3,43,980	MOIL / OMC		(throughcovered
						trucks)
2						

PIONEER ENVIRO Laboratories & Consultants Pvt. Ltd

mmary

Jhiriya & BitkuliVillages, BemetaraTehsil& District, Chhattisgarh

S.No.	Raw Material	Quantity (TPA)	Sources	Distance from site (in Kms.)	Mode of Transport
b)	LAM coke	55,188	Andhra Pradesh	~ 500 Kms.	By road (through covered trucks)
c)	Dolomite	25,704	Chhattisgarh / Andhra Pradesh	~ 500 Kms.	By road (through covered trucks)
d)	MS Scrap / Mill scales	22,680	Inhouse Generation		By road (through covered trucks)
e)	Electrode Paste	1,966	Maharashtra / West Bengal	~ 300 Kms.	By road (through covered trucks)
f)	Briquetted Bag filter dust	7,560	Own generation		
7 (iii)	Silico Manganese –86,4007	ΓΡΑ			
a)	Manganese Ore	1,40,832	MOIL / OMC	~ 500 Kms.	By Rail & Road (throughcovered trucks)
b)	LAM Coke	32,400	Andhra Pradesh	~ 500 Kms.	By road (through covered trucks)
c)	FeMn Slag	91,416	In house generation		
d)	Dolomite	19,440	Chhattisgarh / Andhra Pradesh	~ 500 Kms.	By road (through covered trucks)
e)	Electrode paste	1,728	Maharashtra / West Bengal	~ 300 Kms.	By road (through covered trucks)
f)	Quartz	20,736	Chhattisgarh / Andhra Pradesh	~ 500 Kms.	By road (through covered trucks)
g)	BriquettedBagfilter dust	1,728	Own generation		
7 (iv)	For Ferro Chrome – 90,000	TPA			
a)	Chrome Ore	1,80,000	Sukinda, Odisha Import, South Africa	~ 500 Kms. ~ 600 Kms. (from Vizag Port)	By road (through covered trucks) From Port By Road (through covered Trucks)
b)	LAM Coke	29,700	Andhra Pradesh	~ 500 Kms.	By road (through covered trucks)
~				F	vecutive Summary

PIONEER ENVIRO Laboratories & Consultants Pvt. Ltd Executive Summary 7

Jhiriya & BitkuliVillages, BemetaraTehsil& District, Chhattisgarh

S.No.	Raw Material	Quantity (TPA)	Sources	Distance from	Mode of Transport
				site (in Kms.)	
			Chhattisgarh /	~ 500 Kms.	By road
c)	Quartz	15,750	Andhra		(through covered
			Pradesh		trucks)
			Inhouse		By road
d)	MS Scrap / Mill Scale	13,500	Generation		(through covered
			Generation		trucks)
			Chhattisgarh /	~ 500 Kms.	By road
e)	Magnetite / Bauxite	15,210	Maharashtra		(through covered
			Wallardshire		trucks)
			Maharashtra /	~ 300 Kms.	By road
f)	Electrode Paste	2,700	West Rengal		(through covered
			West beliga		trucks)
σ)	Bagfilter dust	5 760	Own		
		3,700	generation		
7 (v)	For Pig Iron-1,51,200 TPA		1		_
			Barbil, Orissa	~ 500 Kms.	By rail & road
a)	HG Iron ore	2,23,020	NMDC,		(through covered
			Chhattisgarh		trucks)
			Andhra	~ 500 Kms.	By road
b)	LAM Coke	73,332	Pradesh		(through covered
					trucks)
			Chhattisgarh /	~ 500 Kms.	By road
c)	Lime stone	18,900	Andhra		(through covered
			Pradesh		trucks)
			Chhattisgarh /	~ 500 Kms.	By road
d)	Quartz	9,072	Andhra		(through covered
			Pradesh		trucks)
			Maharashtra /	~ 300 Kms.	By road
e)	Electrode Paste	3,024	West Bengal		(through covered
					trucks)
f)	Briquetted Bag filter dust	4 536	Own		
''	Sugartica bag inter aust	7,000	generation		

1.4 MANUFACTURING PROCESS

1.4.1 IRON ORE BENEFICIATION PLANT

The proposal consists of 0.85 MTPA Iron Ore Benefication unit. Beneficiation process is a combination of crushing, screening, washing, grinding, classifying by gravity separation, magnetic separation, floatation processes. The final concentrate slurry is filter pressed to get a dry enriched ore quality with Fe > 65% and moisture ~10%. The water is recycled in the process. The tailings are processed in a thickener & Filter pressed and the excess water will be recovered and circulated in the process. The tailings filter cake is of low value with Fe <45% and moisture content ~10%. This Filter cake will be stored in storage yard earmarked within the plant premises.

1.4.2 PELLETISATION UNIT

The proposal consists of 0.60 MTPA Pellet Plant. The process of pelletization enables converting Iron Ore Fines into "Uniformed Sized Iron Ore Pellets" that will be charged into the Rotary Kiln for production of Direct Reduced Iron (DRI). Pellets are uniform size, with purity of 63%- 65% contributing to faster reduction and high metallization rates. Pellets with their high, uniform mechanical strength and high abrasive strength.

1.4.3 Sponge Iron (DRI)

The proposal consists of 2 x 350 TPD & 2 x 600 TPD to manufacture 6,27,000 TPAof Sponge Iron with 46.0MW WHRB facility. Refractory lined rotary kilns will be used for reduction of iron ore in solid state.

Refractory lined rotary kilns will be used for reduction of iron ore in solid state. A central Burner located at the discharge end will be used for initial heating of the kiln.

Iron ore will be continuously fed into the kiln along with coal which has dual role of fuel as well as reductant. Dolomite will be added to scavenge the sulphur from the coal. A number of air tubes will be provided along the length of the kiln. The desired temperature profile will be maintained by controlling the volume of the combustion air through these tubes. The Carbon monoxide generated due to the combustion of coal, reduces the iron ore and converts it into sponge iron. The rotary kiln is primarily divided into two zones viz. the pre heating zone and the reduction zone. The preheating zone extends over 30 to 50 % of the length of the kiln and in this the moisture in the charge will be driven off and the volatile

matter in the coal will be burnt with the combustion air supplied through the air tubes. Heat from the combustion raises the temperature of the lining and the bed surface. As the kiln rotates, the lining transfers the heat to the charge. Charge material, pre-heated to about 1000[°]C enters the reduction zone. Temperature of the order of 1050[°]C will be maintained in the reduction zone, which is the appropriate temperature for solid state reduction of iron oxide to metallic iron.

This hot material will be transferred to Heat exchanger. In Heat exchanger the material will be cooled to 160°C. The cooler discharge material consists of sponge iron lumps, sponge iron fines and char. Magnetic and non-magnetic material will be separated through magnetic separators and stored in separate bins. The hot flue gases will be taken to a Waste Heat Recovery Boilers and after heat recovery they will be treated in high efficiency ESP and discharged into the atmosphere through stack whose height will be in accordance with CPCB norms.

1.4.4Steel Melting Shop

In Steel Melting Shop (SMS), Sponge Iron will be melted along with melting scrap and fluxes to make pure liquid steel and then to mould it in required size billets. The SMS will consistofInduction furnace, Ladles, Cranes & Continuous Casting Machine (CCM). There will be 4 x 15 T & 4 x 20 T Induction furnaces to manufacture Hot Billets/ Billets of 4,62,000 TPA. Either the Hot Billets produced from LRF will be directly sent to Rolling Mill without using Re-heating Furnace through Hot charging method (or) Billets / Ingots will be sent to Reheating Furnace to reheat the Billets and then sent to Rolling Mill to manufacture Rolled Products. The flue gases will be treated in fume extraction system with bagfilters.

1.4.5 Rolling Mill

The Hot Billets produced from Induction Furnaces will be directly sent to Rolling Mill to produce Rolled Products (OR) Hot Billetswill be cooled and stored will be sent to reheating furnaces for the heating and will be sent to Rolling Mill.Furnace will be heated with LDO / LSHS. A Rolling mill will be installed in the plant to produce 4,62,000 TPA of TMT Bars / Structural Steels.

1.4.6Submerged Electric Arc Furnace

Submerged Electric Arc Furnace(2 x 18 MVA & 2 x 9 MVA) will be setup in the proposed plant. Ferro Manganese, Silicon Manganese will be produced using manganese ore as main raw material, Ferro Silicon will be produced using Quartz as main raw material & Ferro Chrome will be produced using Chrome Ore as main raw material in a sub-merged arc furnace using reducer (Coke) under high voltage. Flue gases will be extracted through 4thhole and then treated in bag filters.

1.4.7Power Generation

Through WHRB Boiler

The hot flue gases from proposed 2 x 350 TPD & 2 x 600 TPDDRI kilns will pass through waste heat recovery Boiler to recover the heat and to generate (2 x 8 MW & 2 x 15 MW)electricity. The gases after heat recovery will pass through ESP and then discharged through chimneys into the atmosphere for effective dispersion of emissions into the atmospherethroughstacks of adequate height.

Through FBC Boiler

Coal (Imported / Indian) along withdolochar will be used as fuel in CFBC Boilers to generate 20 MWofelectricity. The flue-gases will be treated in high efficiency ESP and then discharged through a stack of adequate height into the atmosphere.

1.5 Water Requirement

- Water required for the proposed project will be 3400 KLD. This includes make up water for I/O Beneficiation, Pellet Plant, DRI Kilns, Induction Furnaces, Rolling Mill, Ferro Alloys Unit, Brick manufacturing unit & for Domestic requirement.
- Water required for proposed project (for process and domestic) will be met from partly from Water Reservoir at the site and partly from Shivnath river (which is at a distance of 2.3 Kms. from the project site). A dedicated pipeline will be laid from the river to the project site.
- Application has been submitted for drawl of water from Shivnath river.
- State Investment Promotion Board (SIPB) has issued an assurance letter as per MoU enter with Govt. of Chhattisgarh, for supply of water from Shivnath River.

• Air cooled condensers will be provided to FBC Power plant instead of water-cooled condensers to reduce the water consumption significantly.

S.No.	Unit	Quantity in KLD
1.	I/O Beneficiation & Pellet Plant	350
2.	Coal Gasifier	20
3.	DRI Kilns	630
4.	Induction Furnaces	320
5.	Rolling Mills	420
6.	Ferro Alloys	180
7.	Power Plant (WHRB & FBC)	1320
	 Cooling tower makeup 	635
	Boilers make up	476
	DM plant Regeneration	208
8.	Brick Manufacturing unit	10
9.	Briquetting Plant	10
10.	Domestic	40
11.	Water Treatment Plant (WTP)	100
	Total	3400

Table No.1.4: Water Requirement Breakup

1.6 Wastewater Generation

- Total effluent generated from the proposed project will be 722 KLD.
- There will be no effluent discharge from the Sponge Iron unit & I/O ore beneficiation unit as closed-circuit cooling system will be adopted.
- Effluent from Pelletisation plant, Induction Furnace, Ferro Alloys & Power Plant will be treated in ETP and after ensuring compliance with SPCB norms, it will be utilized for dust suppression, ash conditioning and for greenbelt development.
- Effluent from Coal gasifier (phenolic effluent) will be used in ABC chamber for quenching in DRI Units.
- Effluent from Rolling Mill will be sent to settling tank & will be recycled through closed circuit cooling system.
- Air Cooled condensers will be provided in the power plant, which will be reduce the water consumption significantly. Hence wastewater generation will also be minimized.
- WTP rejects will be used for dust suppression & ash conditioning.
- Sanitary waste water will be treated in STP.
- Garland drains will be provided around all the raw material stacking areas.

- During monsoon the treated effluent will be utilized as makeup water in Rolling Mill. Accordingly, the makeup water for Rolling mill also reduces during the rainy period.
- Zero Liquid Discharge (ZLD) will be maintained in the proposed project.

S.No.	Source	Generation (KLD)
1.	I/O Beneficiation plant	
2.	Pellet Plant	8
3.	DRI Unit	
4.	Induction Furnace	32
5.	Rolling Mill	21
6.	Ferro Alloys	12
7.	Coal Gasifier	16
8.	Power Plant	501
	a) Cooling Tower blowdown	159
	b) Boilers blowdown	134
	c) D.M. plant regeneration water	208
9.	WTP rejects	100
10.	Sanitary Wastewater	32
	Total	722

Table No.1.5: BreakupofWastewater Generation

1.7 Wastewater Characteristics

The following are the Characteristics of wastewater.

Table No.1.6:	Characteristics	of Effluent
---------------	-----------------	-------------

PARAMETER	CONCENTRATION				
	Cooling Tower	DM Plant	Boiler	Sanitary	
	blowdown	Regeneration	Blowdown	waste water	
рН	7.0 - 8.0	5.0 - 10.0	9.5 – 10.5	7.0 – 8.5	
BOD (mg/l)				200 – 250	
COD (mg/l)				300 - 400	
TDS (mg/l)	1000	5000 - 6000	1000 mg/l	800 - 900	
Oil & Grease (mg/l)		10		5 - 10	
TSS (mg/l)				150-200	

2.0 DESCRIPTION OF ENVIRONMENT

Base line data has been collected on ambient air quality, water quality, noise levels, flora and fauna and socio-economic details of people within 10 km radius of the plant.

2.1 Ambient air quality

Ambient air quality was monitored for $PM_{2.5}$, PM_{10} , SO_2 , NOx & CO at 8 stations including project site during**1**st**March 2022 to 31**st**May 2022**. The following are the concentrations of various parameters at the monitoring stations:

S.No.	Parameter	Concentration range	Standard as per NAAQS
1.	PM _{2.5}	22.3 to 50.5 μg/m ³	60
2.	PM ₁₀	39.8 to 68.6 μg/m ³	100
3.	SO ₂	8.4 to 15.3 μg/m ³	80
4.	NO _X	10.4 to 18.6 μg/m ³	80
5.	СО	525 to 1150 μg/m ³	2000

Table	No.2.1	: AAQ	Data	Summary
-------	--------	-------	------	---------

2.2 Water Quality

2.2.1 Surface Water Quality

4 no. of samples i.e. 60m Upstream & 60 m Downstream from Seonath River (2.3 Kms. – West Direction) and Hanp River(3.4 Kms. – N Direction) have beencollected and analyzed for various parameters. The analysis of samples shows that all the parameters are in accordance with BIS-2296 specifications.

2.2.2 Ground Water Quality

8 No. of ground water samples from open wells / bore wells were collected from the nearby villages to assess ground water quality impacts and analyzed for various Physico-Chemical parameters. The analysis of samples shows that all the parameters are in accordance with BIS: 10500 specifications.

2.3 Noise Levels

Noise levels were measured at 8 locations during daytime&Nighttime. The equivalent daynight noise levels in the study zone are ranging from **46.7 dBA to 51.4 dBA**.

3.0 ANTICIPATED ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

3.1 Prediction of impacts on air quality

The likely emissions from the proposed project are PM_{10} , SO_2 , NOx& CO. The predictions of Ground level concentrations have been carried out using Industrial Source Complex (ISC-3) model. Meteorological data such as wind direction, wind speed, max. and min. temperatures collected at the site have been used as input data to run the model.

Table No.2.2: NET RESULTANT MAXIMUM CONCENTRATIONS DURING THE OPERATION OF THE

Item	PM ₁₀	SO ₂	NOx	CO
	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)
Maximum baseline conc. in the study area	68.6	15.3	18.6	1150
Maximum predicted incremental rise in	1847.9	9.47	11.71	
concentration due to proposed project (Point				
Sources)				
Maximum predicted incremental rise in	1.32		9.89	6.39
concentration due to proposed project (Vehicular				
emissions)				
Net resultant concentrations during operation of	1,917.82	24.77	40.2	1,156.39
the proposed project				
National Ambient Air Quality Standards	100	80	80	2000

PROPOSEDPROJECT (APCS WORKING SCENARIO)

The net resultant Ground level concentrations during operation of the proposed project are within the NAAQS. Hence, there will not be any adverse impact on air environment due to the proposed project.

3.2 Prediction of impacts on Noise quality

The major sources of noise generation in the proposed project will be STG, boilers, compressors, DG set, etc. Acoustic enclosures will be provided to the STG. The ambient noise levels will be within the standards prescribed by MoEF vide notification dated 14-02-2000 under the Noise Pollution (Regulation & Control), Rules 2000 i.e. the noise levels will be less than 75 dBA during day time and less than 70 dBA during night time. **14.37 Ha. (35.50 Acres)**of extensive greenbelt will be developed to further attenuate the noise levels. Hence there will not be any adverse impact due to noise on population in surrounding areas due to the proposed project.

3.3 Prediction of impacts on Water Environment

- There will be no effluent discharge from the Sponge Iron unit & I/O ore beneficiation unit as closed-circuit cooling system will be adopted.
- Effluent from Pelletisation plant, Induction Furnace, Ferro Alloys & Power Plant will be treated in ETP and after ensuring compliance with SPCB norms, it will be utilized for dust suppression, ash conditioning and for greenbelt development.
- Effluent from Coal gasifier (phenolic effluent) will be used in ABC chamber for quenching in DRI Units.

- Effluent from Rolling Mill will be sent to settling tank & will be recycled through closed circuit cooling system.
- Air Cooled condensers will be provided in the power plant, which will be reduce the water consumption significantly. Hence wastewater generation will also be minimized.
- WTP rejects will be used for dust suppression & ash conditioning.
- Sanitary waste water will be treated in STP.
- Garland drains will be provided around all the raw material stacking areas.
- During monsoon the treated effluent will be utilized as makeup water in Rolling Mill. Accordingly, the makeup water for Rolling mill also reduces during the rainy period.
- Zero Liquid Discharge (ZLD) will be maintained in the proposed project.

3.4 Prediction of Impacts on Land Environment

The effluent will be treated to achieve SPCB standards. Zero effluent discharge will be adopted. All the required air pollution control systems will be provided to comply with CPCB / SPCB norms. All solid wastes will be disposed / utilized as per CPCB / SPCB norms**14.37 Ha. (35.50 Acres)**of extensive greenbelt will be developed as per guidelines. Hence, there will not be any adverse impact on land environment due to the proposed project.

3.5 Socio - Economic Environment

There will be certain upliftment in Socio Economic status of the people in the area & development of the area due to the proposed project. Due to this the economic conditions, the educational and medical standards of the people living in the study area will certainly move upwards which will result in overall economic development, improvement in general aesthetic environment and increase in business opportunities.

4.0 ENVIRONMENTAL MONITORING PROGRAMME

Post project monitoring will be conducted as per the guidelines of SPCB and MoEF&CC are tabulated below:

S.No.	Particulars	Frequency of Monitoring	Duration of sampling	Parameters required to be monitored
1. Wat	er &Wastewater quality	1		
Α.	Water quality in the	Once in a month except	Composite sampling	As per IS: 10500
area for heavy metals which (24 hourly)				
Executive Summary				
A Free L	aboratories & Consultants Pvt. Ltd			16

TABLE NO.4.1: MONITORING SCHEDULE FOR ENVIRONMENTAL PARAMETERS

Jhiriya & BitkuliVillages, BemetaraTehsil& District, Chhattisgarh

S.No.	Particulars	Frequency of	Duration of	Parameters required
		Monitoring	sampling	to be monitored
		will be monitored on		
		quarterly basis		
В.	Effluent at the outlet	Twice in a month	Grab sampling	As per EPA Rules, 1996
	of the ETP		(24 hourly)	
C.	STP Inlet & Outlet	Twice in a month	Grab sampling	As per EPA Rules1996
			(24 hourly)	
2. Air (Quality			
Α.	Stack Monitoring	Online monitors		PM
		(all stacks)		
		Once in a month		PM,SO ₂ & NOx
В.	Ambient Air quality	Continuous	Continuous	PM ₁₀ , SO ₂ & NOx
	(CAAQMS)			
		QuarterlyOnce	24 hours	PM _{2.5} , PM ₁₀ , SO ₂ ,
				NOx& CO
С.	Fugitive emissions	QuarterlyOnce	8 hours	PM
3. Met	eorological Data			
	Meteorological data	Daily	Continuous	Temperature, Relative
	to be monitored at		monitoring	Humidity, rainfall,
	the plant.			wind direction & wind
				speed.
4. Nois	e level monitoring			
	Ambient Noise levels	QuarterlyOnce	Continuous for 24	Noise levels
			hours with 1 hour	
			interval	

5.0 ADDITIONAL STUDIES

No Rehabilitation and Resettlement is involved in the proposed project as there are no habitations in the project site. Hence no R & R study has been carried out.

6.0 PROJECT BENEFITS

With the establishment of the proposed project employment potential will increase. Land prices in the area will increase. The economic status of the people in the area will improve due to the proposed project. Periodic medical checkups will be carried out. Top priority will be given to locals in employment.

7.0 ENVIRONMENT MANAGEMENT PLAN

7.1 Air Environment

The following are air emission control systems proposed in the proposed project:

S.No.	Source	Control Equipment	Emission at the outlet
1.	Pellet Plant	Electro Static Precipitators (ESP)	PM< 30 mg/Nm ³
2.	DRI kilns with WHRB's	Electro Static Precipitators (ESP) (High Performance rigid electrodes)	PM < 30 mg/Nm ³
3.	Induction Furnaces with CCM	Fume Extraction system with PTFE bag filters	PM < 30 mg/Nm ³
4.	Submerged Electric Arc Furnace	4 th Hole Fume Extraction system with bag filters	PM < 30 mg/Nm ³
5.	Re-heating furnaces attached to Rolling Mill	Stack	PM < 30 mg/Nm ³
6.	FBC Boiler	Electro Static Precipitators (High Performance rigid electrodes) Limestone will be used as bed material and act as sulphur absorbent. Lime dosing will also be done	PM < 30 mg/Nm ³ SOx< 100 mg/Nm ³
		Combustion temperature will be around 800-850 ⁰ C, which is not conducive for thermal NOx formation. Low NOx burners with 3-stage combustion, flue gas recirculation and auto combustion control system will be provided.	NOx < 100 mg/Nm ³

	Table No.11.7.1: Air	Emission (Control Sv	vstems Pro	posed
--	----------------------	------------	------------	------------	-------

Note : Apart from the above Dry fog system with dust suppression at transfer points, crushing plant, dust extraction system with bagfilters at other dust emanating areas, covered conveyers, mechanical dust sweepers, etc. will also be provided.

Apart from the above the following air emission control systems/ measures are proposed in the Plant:

- All conveyors will be completely covered with G.I. sheets to control fugitive dust.
- All bins will be totally packed and covered so that there will not be any chance for dust leakage.
- All the dust prone points material handling systems will be connected with de-dusting system with bag filters.
- All discharge points and feed points, wherever the possibility of dust generation is there a de-dusting suction point will be provided to collect the dust.

7.2 Water Environment

• Total effluent generated from the proposed project will be 722 KLD.

- There will be no effluent discharge from the Sponge Iron unit & I/O ore beneficiation unit as closed-circuit cooling system will be adopted.
- Effluent from Pelletisation plant, Induction Furnace, Ferro Alloys & Power Plant will be treated in ETP and after ensuring compliance with SPCB norms, it will be utilized for dust suppression, ash conditioning and for greenbelt development.
- Effluent from Coal gasifier (phenolic effluent) will be used in ABC chamber for quenching in DRI Units.
- Effluent from Rolling Mill will be sent to settling tank & will be recycled through closed circuit cooling system.
- Air Cooled condensers will be provided in the power plant, which will be reduce the water consumption significantly. Hence wastewater generation will also be minimized.
- WTP rejects will be used for dust suppression & ash conditioning.
- Sanitary waste water will be treated in STP.
- Garland drains will be provided around all the raw material stacking areas.
- During monsoon the treated effluent will be utilized as makeup water in Rolling Mill. Accordingly, the makeup water for Rolling mill also reduces during the rainy period.
- Zero Liquid Discharge (ZLD) will be maintained in the proposed project.

EFFLUENT TREATMENT PLANT

pH of the boiler blowdown will be between 9.5 to 10.5. Hence a neutralization tank will be constructed for neutralizing the boiler blow down. DM plant regeneration water will be neutralized in a neutralization tank. After neutralization, these two effluent streams will be mixed with Cooling Tower blowdown in a Central Monitoring Basin (CMB). Service water will be treated in an oil separator and after treatment it will be taken to CMB. The treated effluent will be utilized for dust suppression, ash conditioning and for Greenbelt development. No effluent will be let out of the plant premises. Hence Zero discharge concept will be implemented.

The following will be treated combined effluent characteristics.

•	рН	-	6.5 - 8.5	

- TSS < 100 mg/l
 Oil & Grease < 10 mg/l
- Free available chlorine <1.0 mg/l

Jhiriya & BitkuliVillages, BemetaraTehsil& District, Chhattisgarh

•	Copper	-	<1.0 mg/l
•	Iron	-	< 1.0 mg/l
٠	Zinc	-	< 1.0 mg/l
٠	Chromium	-	< 0.2 mg/l
•	Phosphates	-	< 5.0 mg/l

Treated Sewage Characteristics

S.No.	Parameters	Parameters limit
1.	рН	6.5 – 8.0
2.	BOD (mg/ L)	Not more than 10
3.	COD (mg/ L)	Not more than 50
4.	TSS (mg/ L)	Not more than 20
5.	NH ₄ -N (mg/ L)	Not more than 5
6.	N-Total (mg/ L)	Not more than 10
7.	Fecal Coliform (MPN/100 ml)	Less than 100

TREATED EFFLUENT DISPOSAL

Total treated effluent generation	722 KLD
Effluent quantity to be used for ash conditioning	86 KLD
Effluent to be used for dust suppression in CHP	130 KLD
Effluent to be used for Greenbelt development	355 KLD
Effluent from Gasifier to be used in ABC Chamber	16 KLD
RO Rejects to be used for Floor washing, Toiler cleaning & Flushing	135 KLD

14.37 Ha. of greenbelt will be developed within the plant premises by using the treated effluent. A dedicated pipe distribution network will be provided for using the treated effluent for greenbelt development.

7.3 Noise Environment

The major sources of noise generation in the proposed project will be STG, boilers, compressors, DG set, etc. Acoustic enclosure will be provided. All the machinery will be manufactured in accordance with MoEF&CC norms on Noise levels. The employees working near the noise generating sources will be provided with earplugs. The extensive greenbelt development proposed within the plant premises will help in attenuating the noise levels further. Noise barriers in the form of trees are recommended to be grown around administrative block and other utility units.

7.4 Land Environment

The wastewater generated from the proposed project will be treated in the Effluent Treatment Plant to comply with the SPCB standards and will be used for dust suppression,ash conditioning and for greenbelt development. All the required Air emission control systems will be installed and operated to comply with SPCB norms. Solid wastes will be disposed off as per norms. Extensive greenbelt will be developed in the plant premises. Desirable beautification and landscaping practices will be followed. Hence there will not be any impact due to the proposed project.

S.No.	Waste / By product	Quantity (TPA)	Proposed method of disposal
1.	Tailing from I/O Benf.	1,70,000	Will be taken to filter press and after dewatering, thefilter cake of tailing will be stored in tailing yard & it will given to nearby Ceramic Units.
2.	Ash from Pellet Plant	18,000	Will be utilized in the proposed Brick Manufacturing Unit
3.	Ash from DRI	1,12,860	Will be utilized in the proposed Brick Manufacturing Unit
4.	Dolochar	1,25,400	Will be used in proposed FBC power plant as fuel.
5.	Kiln Accretion Slag	5,643	Will be used in road construction & utilized in the proposed brick manufacturing unit.
6.	Wet scrapper sludge	25,080	Will be used in road construction & utilized in the proposed brick manufacturing unit within the premises.
7.	SMS Slag	46,200	Slag from SMS will be crushed and iron will be recovered & then remaining non -magnetic material being inert by nature will be used as sub base material in road construction.
8.	End Cuttings from Rolling Mill	2,079	Will be reused in the SMS
9.	Mill scales from Rolling Mill	1,386	Mill scales will be utilized in the proposed Ferro alloys manufacturing units.
10.	Ash from Power Plant (with Indian Coal + dolochar)	1,00,485	Will be utilized in the proposed brick manufacturing unit within the premises.
11.	Slag from FeMn	91,416	Will be reused in manufacture of SiMn as it contains high SiO ₂ and Silicon.
12.	Slag from FeSi	10,114	Will be given to Cast iron foundries
13.	Slag from SiMn	76,962	will be used for Road construction / will be given toslag cement manufacturing
14.	Slag from FeCr	52,271	Will be processed in jigging plant for Chrome recovery. After Chrome recovery, the left-over slag

Table No.7.2: Solid Waste Generation and Disposal

PIONEER ENVIRO

Executive Summary

S.No.	Waste / By product	Quantity (TPA)	Proposed method of disposal
			will be analysed for Chrome content through TCLP test, if the Chrome content in the slag is within the permissible limits, then it will be utilized for Road laying /brick manufacturing. If Chrome content exceeds the permissible limits, it will be sent to nearest TSDF.
15.	Slag from Pig Iron	65,016	Will be given to slag cement manufacturing

7.5 Greenbelt Development

Greenbelt of **14.37 Ha.** of extensive greenbelt will be developed in the plant premises. Width of proposed greenbelt ranges from 20m.

7.6 Cost for Environment Protection

Capital Cost for Environment Protection for proposed plant	: Rs. 55.6 Crores
Recurring Cost per annum for Environmental protection	: Rs. 10.3 Crores

7.7 Implementation of CREP Recommendations

All the CREP recommendations will be strictly followed.

- > Continuous stack monitoring system is proposed for stack attached to all the Stacks.
- Online Ambient Air Quality Monitoring Stations will be established in consultation with SPCB during operation of the plant.
- > Fugitive emission monitoring will be carried out as per CPCB norms.
- Energy meters will be installed for all the pollution control systems.
- > Rain water harvesting pits are being constructed in consultation with CGWB.